9,436 research outputs found

    The origin of Peterlee new town: some features of its subsequent development

    Get PDF
    Not availabl

    Polarization modes for strong-field gravitational waves

    Full text link
    Strong-field gravitational plane waves are often represented in either the Rosen or Brinkmann forms. These forms are related by a coordinate transformation, so they should describe essentially the same physics, but the two forms treat polarization states quite differently. Both deal well with linear polarizations, but there is a qualitative difference in the way they deal with circular, elliptic, and more general polarization states. In this article we will describe a general algorithm for constructing arbitrary polarization states in the Rosen form.Comment: 4 pages. Prepared for the proceedings of ERE2010 (Granada, Spain

    Transillumination imaging through scattering media by use of photorefractive polymers

    Get PDF
    We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800 nm with a mode-locked continuous-wave Ti:sapphire laser

    Consequences of Leading-Logarithm Summation for the Radiative Breakdown of Standard-Model Electroweak Symmetry

    Full text link
    In the empirically sensible limit in which QCD, t-quark Yukawa, and scalar-field-interaction coupling constants dominate all other Standard-Model coupling constants, we sum all leading-logarithm terms within the perturbative expansion for the effective potential that contribute to the extraction of the Higgs boson mass via radiative electroweak symmetry breaking. A Higgs boson mass of 216 GeV emerges from such terms, as well as a scalar-field-interaction coupling constant substantially larger than that anticipated from conventional spontaneous symmetry breaking. The sum of the effective potential's leading logarithms is shown to exhibit a local minimum in the limit ϕ→0\phi \to 0 if the QCD coupling constant is sufficiently strong, suggesting (in a multiphase scenario) that electroweak physics may provide the mechanism for choosing the asymptotically-free phase of QCD.Comment: latex using aip proceedings class. 8 page write-out of presentation at MRST 2003 Conference (Syracuse

    Higher Order Stability of a Radiatively Induced 220 GeV Higgs Mass

    Full text link
    The effective potential for radiatively broken electroweak symmetry in the single Higgs doublet Standard Model is explored to four sequentially subleading logarithm-summation levels (5-loops) in the dominant Higgs self-interaction couplant λ\lambda. We augment these results with all contributing leading logarithms in the remaining large but sub-dominant Standard Model couplants (t-quark, QCD and SU(2)⊗U(1)SU(2)\otimes U(1) gauge couplants) as well as next to leading logarithm contributions from the largest of these, the t-quark and QCD couplants. Order-by-order stability is demonstrated for earlier leading logarithm predictions of an order 220 GeV Higgs boson mass in conjunction with fivefold enhancement of the value for λ\lambda over that anticipated from conventional spontaneous symmetry breaking.Comment: revtex, 6 pages. Analysis and text is expanded in revised versio

    On the Standard Approach to Renormalization Group Improvement

    Full text link
    Two approaches to renormalization-group improvement are examined: the substitution of the solutions of running couplings, masses and fields into perturbatively computed quantities is compared with the systematic sum of all the leading log (LL), next-to-leading log (NLL) etc. contributions to radiatively corrected processes, with n-loop expressions for the running quantities being responsible for summing N^{n}LL contributions. A detailed comparison of these procedures is made in the context of the effective potential V in the 4-dimensional O(4) massless λϕ4\lambda \phi^{4} model, showing the distinction between these procedures at two-loop order when considering the NLL contributions to the effective potential V.Comment: 6 page

    New systems on northwest Missouri upland farms

    Get PDF
    November, 1938

    The Long and Short of Nuclear Effective Field Theory Expansions

    Get PDF
    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.Comment: 22 pages, 9 figures, references corrected, minor modification

    An overview of mutational and copy number signatures in human cancer

    Get PDF
    The genome of each cell in the human body is constantly under assault from a plethora of exogenous and endogenous processes that can damage DNA. If not successfully repaired, DNA damage generally becomes permanently imprinted in cells, and all their progenies, as somatic mutations. In most cases, the patterns of these somatic mutations contain the tell-tale signs of the mutagenic processes that have imprinted and are termed mutational signatures. Recent pan-cancer genomic analyses have elucidated the compendium of mutational signatures for all types of small mutational events, including: (i) single base substitutions; (ii) doublet base substitutions; and (iii) small insertions/deletions. In contrast to small mutational events, where, in most cases, DNA damage is a prerequisite, aneuploidy, which refers to the abnormal number of chromosomes in a cell, usually develops from mistakes during DNA replication. Such mistakes include DNA replication stress, mitotic errors caused by faulty microtubule dynamics, or cohesion defects that contribute to chromosomal breakage and can lead to copy number alterations or even to structural rearrangements. These aberrations also leave behind genomic scars which can be inferred from sequencing as copy number signatures and rearrangement signatures. The analyses of mutational signatures of small mutational events have been extensively reviewed [1-3], so we will not comprehensively re-examine them here. Rather, our focus will be on summarizing the existing knowledge for mutational signatures of copy number alterations. As studying copy number signatures is an emerging field, we briefly summarize the utility that mutational signatures of small mutational events have provided in basic science, cancer treatment, and cancer prevention and we emphasize the future role that copy number signatures may play in each of these fields
    • …
    corecore