48,102 research outputs found
Magnetization in electron- and Mn- doped SrTiO3
Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic
insulator with interesting dielectric properties. Since delocalized charge
carriers are known to promote ferromagnetism in a large number of systems via
diverse mechanisms, we have looked for the possibility of any intrinsic,
spontaneous magnetization by simultaneous doping of Mn ions and electrons into
SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the
extent of making the doped system metallic. We find an absence of any
enhancement of the magnetization in the metallic sample when compared with a
similarly prepared Mn doped, however, insulating sample. Our results, thus, are
not in agreement with a recent observation of a weak ferromagnetism in metallic
Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure
Role of isospin physics in supernova matter and neutron stars
We investigate the liquid-gas phase transition of hot protoneutron stars
shortly after their birth following supernova explosion and the composition and
structure of hyperon-rich (proto)neutron stars within a relativistic mean-field
model where the nuclear symmetry energy has been constrained from the measured
neutron skin thickness of finite nuclei. Light clusters are abundantly formed
with increasing temperature well inside the neutrino-sphere for an uniform
supernova matter. Liquid-gas phase transition is found to suppress the cluster
yield within the coexistence phase as well as decrease considerably the
neutron-proton asymmetry over a wide density range. We find symmetry energy has
a modest effect on the boundaries and the critical temperature for the
liquid-gas phase transition, and the composition depends more sensitively on
the number of trapped neutrinos and temperature of the protoneutron star. The
influence of hyperons in the dense interior of stars makes the overall equation
of state soft. However, neutrino trapping distinctly delays the appearance of
hyperons due to abundance of electrons. We also find that a softer symmetry
energy further makes the onset of hyperon less favorable. The resulting
structures of the (proto)neutron stars with hyperons and with liquid-gas phase
transition are discussed.Comment: 11 pages, 7 figures, RevTe
Environmental Initiatives and Earnings Management
Purpose – The purpose of this paper is to provide initial evidence on the association between environmental initiatives and earnings management. Prior literature documents firms participating in environmental initiatives to report relatively stronger financial performance. Moreover, firms with superior performance have been shown to engage in greater levels of earnings management. A natural question that arises is to what extent do firms with environmental initiatives engage in earnings management to report better financial performance? Design/methodology/approach – The study draws on two theoretical frameworks, external monitoring and internal corporate culture, to predict an inverse association between environmental initiatives and earnings management. The authors test this prediction using an earnings management regression model, estimating discretionary accruals using the modified-Jones approach. Findings – The study finds that firms with environmental initiatives exhibit lower earnings management proxied by absolute and income-increasing total discretionary accruals. The authors further find pollution prevention and climate related initiatives to help explain this inverse association. The results imply that firms practising environmental responsibility report better financial performance, with the most likely reason being due to real economic performance rather than through earnings management techniques. Originality/value – This study provides initial evidence on the association between environmental initiatives and earnings management, an area of importance to all stakeholders in a market with increasing interest in corporate environmental performance and its implications
Turbulence and Mixing in the Intracluster Medium
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense
with the entropy increasing outwards. However, thermal conduction along
magnetic field lines fundamentally changes the stability of the ICM, leading to
the "heat-flux buoyancy instability" when and the "magnetothermal
instability" when . The ICM is thus buoyantly unstable regardless of
the signs of and . On the other hand, these
temperature-gradient-driven instabilities saturate by reorienting the magnetic
field (perpendicular to when and parallel to when ), without generating sustained convection. We show that
after an anisotropically conducting plasma reaches this nonlinearly stable
magnetic configuration, it experiences a buoyant restoring force that resists
further distortions of the magnetic field. This restoring force is analogous to
the buoyant restoring force experienced by a stably stratified adiabatic
plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or
cosmic-ray buoyancy) to overcome this restoring force and generate turbulence
in the ICM, the strength of the driving must exceed a threshold, corresponding
to turbulent velocities . For weaker driving, the ICM
remains in its nonlinearly stable magnetic configuration, and turbulent mixing
is effectively absent. We discuss the implications of these findings for the
turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The
Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the
general mixing properties of the IC
Snow cover, snowmelt and runoff in the Himalayan River basins
Not withstanding the seasonal vagaries of both rainfall amount and snowcover extent, the Himalayan rivers retain their basic perennial character. However, it is the component of snowmelt yield that accounts for some 60 to 70 percent of the total annual flow volumes from Hamilayan watersheds. On this large hydropotential predominantly depends the temporal performance of hydropower generation and major irrigation projects. The large scale effects of Himalayan snowcover on the hydrologic responses of a few selected catchments in western Himalayas was studied. The antecedent effects of snowcover area on long and short term meltwater yields can best be analyzed by developing appropriate hydrologic models forecasting the pattern of snowmelt as a function of variations in snowcover area. It is hoped that these models would be of practical value in the management of water resources. The predictability of meltwater for the entire snowmelt season was studied, as was the concurrent flow variation in adjacent watersheds, and their hydrologic significance. And the applicability of the Snowmelt-Runoff Model for real time forecast of daily discharges during the major part of the snowmelt season is examined
Friction of Pneumatic Rubber Tyres on Sand
The paper describes an apparatus for determining the rolling friction of pneumatic rubber tyres on sandy surfaces at different loads for different inflation pressures. The coefficient of friction is dependent on the size and shape of the tyre. The results refer only to measurements at a very low speed. Tyres having a flat tread and low inflation pressure are preferred on sand
- …