1,980 research outputs found

    High-Q Gold and Silicon Nitride Bilayer Nanostrings

    Full text link
    Low-mass, high-Q, silicon nitride nanostrings are at the cutting edge of nanomechanical devices for sensing applications. Here we show that the addition of a chemically functionalizable gold overlayer does not adversely affect the Q of the fundamental out-of-plane mode. Instead the device retains its mechanical responsiveness while gaining sensitivity to molecular bonding. Furthermore, differences in thermal expansion within the bilayer give rise to internal stresses that can be electrically controlled. In particular, an alternating current excites resonant motion of the nanostring. This AC thermoelastic actuation is simple, robust, and provides an integrated approach to sensor actuation.Comment: 5 pages, 4 figures + supplementary materia

    Particle number fluctuations in nuclear collisions within excluded volume hadron gas model

    Get PDF
    The multiplicity fluctuations are studied in the van der Waals excluded volume hadron-resonance gas model. The calculations are done in the grand canonical ensemble within the Boltzmann statistics approximation. The scaled variances for positive, negative and all charged hadrons are calculated along the chemical freeze-out line of nucleus-nucleus collisions at different collision energies. The multiplicity fluctuations are found to be suppressed in the van der Waals gas. The numerical calculations are presented for two values of hard-core hadron radius, r=0.3r=0.3 fm and 0.5 fm, as well as for the upper limit of the excluded volume suppression effects.Comment: 19 pages, 4 figure

    Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities

    Get PDF
    In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here we investigate these QND measurements for an optomechanical system whereby quadratic coupling arises due to shared symmetries between a single optical resonance and a mechanical mode. We establish a relaxed limit on the amount of linear coupling that can exist in this type of system while still allowing for QND measurements of mechanical Fock states. The ability to perform optomechanical QND measurements of this nature would allow one to probe the decoherence of these mesoscopic states, providing an experimental test bed for quantum collapse theories
    • …
    corecore