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Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities
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In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon
number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical
resonators. Here we investigate these QND measurements for an optomechanical system whereby quadratic
coupling arises due to shared symmetries between a single optical resonance and a mechanical mode. We
establish a relaxed limit on the amount of linear coupling that can exist in this type of system while still allowing
for QND measurements of mechanical Fock states. The ability to perform optomechanical QND measurements
of this nature would allow one to probe the decoherence of these mesoscopic states, providing an experimental
test bed for quantum collapse theories.
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I. INTRODUCTION

The theory of quantum mechanics has excelled in describ-
ing a multitude of phenomena associated with microscopic
systems. However, as a system scales to larger sizes, inter-
action with the surrounding environment causes its quantum
mechanical state to decohere into the classical realm [1,2]. Al-
though there are a number of theories proposing mechanisms
by which such decoherence could occur [3–6], this quantum-
to-classical transition remains poorly understood, largely due
to a lack of experimental systems that can be used to study
these processes. To this end, a number of proposals have been
put forward to use cavity optomechanics as an experimental
platform to fill this void [7–10].

In cavity optomechanics, confined photonic degrees of
freedom interact via radiation pressure with a mechanical
resonator [11], allowing one to prepare the mechanical el-
ement into a variety of quantum states [12–17]. Though
experimental progress in quantum cavity optomechanics has
been astounding [18–33], a vital experiment still remains:
the quantum nondemolition (QND) measurement of a me-
chanical resonator’s phonon number [12,14]. While QND
measurements have been demonstrated for single particles
[34,35], photons [36,37], spins [38], and superconducting
qubits [39], as well as for a single quadrature of a microme-
chanical resonator [27,28], measurements of the mechanical
Fock states of a cavity optomechanical system would provide
an engineerable platform to directly probe the decoherence
of a mesoscopic quantum state. However, performing an
experiment of this nature proves to be difficult, largely due to
the fact that most optomechanical cavities couple linearly to
the mechanical resonator’s position [11]. Such a scheme is un-
suitable for QND measurements of the resonator’s quantized
energy, as it is subject to the Heisenberg uncertainty principle
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[40–43]. One must then turn to an optomechanical system
where the optical mode is quadratically coupled to the res-
onator’s position, providing a method by which QND mea-
surements of its phonon number can be performed [12,14].

Experimental demonstration of quadratic coupling in op-
tomechanical systems has been largely focused on membrane-
in-the-middle (MIM) systems [see Fig. 1(a)], whereby a me-
chanical element, which is typically a thin dielectric mem-
brane [12,44,45], but can also be a cloud of cold atoms [46]
or a photonic crystal nanobeam [47,48], is placed within an
optical cavity. Inserting the membrane into the cavity causes
its degenerate optical modes to hybridize into two supermodes
that exhibit an avoided level crossing [44,47]. By moving the
membrane to an antinode of the optical mode, linear coupling
of the membrane’s motion is suppressed and quadratic cou-
pling becomes dominant [12,44,47]. However, when optically
driving one of these supermodes, parasitic linear coupling
to the membrane’s position emerges in the opposite mode,
leading to an accelerated decoherence of the membrane’s
Fock state that can only be overcome in the single-photon
strong-coupling regime [49–51]. This stringent constraint has
proven to be the most difficult obstacle to overcome when
performing QND measurements of phonon number in a MIM
optomechanical system [47].

In this paper, we consider an optomechanical system that
exhibits second-order coupling due to the shared symmetries
between a mechanical resonance and a single optical mode
[52]. Such a system could be physically realized as an out-of-
plane flexural (or torsional) mode of a mechanical resonator
side coupled to a whispering gallery mode (WGM) of a mi-
crodisk [53] [see Fig. 1(b)] or the in-plane motion of a paddle
located within a photonic crystal nanobeam [52]. Here we an-
alyze this quadratically coupled optomechanical system in the
context of resolving the thermally induced jumps between the
quantized energy eigenstates of the mechanical resonator. In
doing so, we place a constraint on the relative strengths of the
linear and quadratic optomechanical couplings of the system,
demonstrating the parameter space for which a QND measure-
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FIG. 1. Schematic of (a) a membrane-in-the-middle optome-
chanical system and (b) a mechanical element side coupled to a
whispering gallery mode optical cavity. In (a), quadratic coupling
arises due to an avoided crossing between the two optical modes
(see Appendix A), labeled by their creation operators â1 and â2.
Meanwhile, in (b), the single optical mode denoted by â is coupled to
the square of the mechanical motion via shared symmetries between
the optics and mechanics (see Appendix B). The direction of the
mechanical displacement x̂ is indicated by black arrows.

ment of phonon number can be performed. Furthermore, we
show that in the case of a MIM system, this generalized limit
is equivalent to the single-photon strong-coupling regime. The
ability to perform these QND measurements will provide a
direct probe of a mesoscopic quantum state, furthering our
understanding of the mechanisms by which quantum systems
transition into the classical regime.

II. OPTOMECHANICAL MODEL

We begin by modeling this optomechanical system as two
coupled harmonic oscillators, with the Hamiltonian

Ĥ = h̄ωc(x̂)â†â + h̄ωmb̂†b̂. (1)

Here â and b̂ (â† and b̂†) are the annihilation (creation)
operators of the optical cavity and the mechanical resonator,
each with resonant angular frequencies of ωc(x̂) and ωm,
respectively. Coupling between the two oscillators arises due
to the fact that the resonant frequency of the optical cavity
is dependent on the position of the mechanics, x̂ = xZPF(b̂ +
b̂†), where xZPF = √

h̄/2mωm is the zero-point fluctuation
amplitude of the mechanical oscillator, with m its effective
mass [54]. Expanding the position dependence of the cavity
frequency to second order, we obtain

ωc(x̂) = ωc + G1x̂ + G2

2
x̂2, (2)

where ωc is the unperturbed cavity frequency, along with the
first- and second-order optomechanical coupling coefficients
G1 = dωc/dx̂ and G2 = d2ωc/dx̂2. Inputting Eq. (2), as well
as the expression for x̂, into Eq. (1) results in

Ĥ = Ĥ0 + Ĥ ′, (3a)

Ĥ0 = h̄
[
ωc + g2

(
b̂†b̂ + 1

2

)]
â†â + h̄ωmb̂†b̂, (3b)

Ĥ ′ = h̄g1(b̂ + b̂†)â†â + h̄g2

2
(b̂b̂ + b̂†b̂†)â†â, (3c)

where we have introduced the single-photon, single- (two-)
phonon coupling rate g1 = G1xZPF (g2 = G2x

2
ZPF).

We have chosen to separate Ĥ into two sub-Hamiltonians
Ĥ0 and Ĥ ′ such that Ĥ0 commutes with the phonon number

operator n̂ = b̂†b̂, while Ĥ ′ does not. In this way, Ĥ0 repre-
sents a QND measurement of the mechanical resonator’s en-
ergy [41,42], whereby changes in phonon number reflect a per
phonon shift of g2 in the optical cavity’s resonant frequency.
On the other hand, [Ĥ ′, n̂] �= 0 such that Ĥ ′, which contains
the interaction terms that evolve in time, acts to contaminate
the QND measurement. This is a well-known fact for the first
term in Ĥ ′, whereby linear coupling simultaneously probes
the phase and energy of the mechanical resonator, preventing
a QND Fock state measurement [40,44]. In principle, one
could completely eliminate this linear coupling by properly
tuning the optical and mechanical symmetries of the system
(see Appendix B). However, for any realistic optomechanical
cavity, a nonzero amount of linear coupling will always creep
into the system due to experimental inaccuracies [12,52,53].
Therefore, we seek to set a limit on the maximum allow-
able linear coupling that can exist in a quadratically coupled
optomechanical device that one wishes to use for a QND
measurement of phonon number. Furthermore, we look to
determine the regime for which the second term in Ĥ ′ can be
safely ignored. To do this, we use a master equation approach
to calculate the rates at which the linear and quadratic terms in
Ĥ ′ act to cause the resonator to transition from a given Fock
state. Comparing these rates to the mechanical resonator’s
intrinsic thermal decoherence rate and the optomechanical
phonon state measurement rate, we ascertain the regime where
QND measurements of phonon number can be achieved.

III. MECHANICAL FOCK STATE DECOHERENCE RATES

To determine the relevant measurement-induced and ther-
mal decoherence rates associated with the optomechanical
QND measurement of mechanical phonon number considered
in this work, we begin by assuming that the optical cavity
is driven via a strong external drive with frequency ωd. This
displaces the optical cavity operators according to â = ā + d̂ ,
where the ā is the classical amplitude (taken to be real) and d̂

denotes the cavity fluctuations. We then switch to a frame that
rotates at the optical cavity drive frequency by applying the
unitary transform Û = eiωd â

†â to the Hamiltonian in Eq. (3a)
to obtain

Ĥ = Ĥc + Ĥm + Ĥom + Ĥκ + Ĥ�,

Ĥc = h̄�d̂†d̂,

Ĥm = h̄ωmb̂†b̂,

Ĥom = h̄ā
[
g1(b̂ + b̂†) + g2

2
(2b̂†b̂ + b̂b̂ + b̂†b̂†)

]
(d̂ + d̂†),

where � = ωc − ωd is the detuning of the optical drive from
the cavity’s resonance frequency and we have neglected terms
proportional to d̂†d̂ in the interaction Hamiltonian Ĥom [11].
We note that we have now also included the coupling of the
optical cavity and mechanical resonator to dissipative Marko-
vian baths, which are described as usual [43] and denoted
by Ĥκ and Ĥ� , giving rise to a cavity decay rate of κ and a
mechanical damping rate of �m, respectively.
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The dynamics of the system is then captured by the master
equation, written in superoperator notation as [55]

∂

∂t
ρ̂ = (Lc + Lm + Lom )ρ̂, (4)

with ρ̂ the total density matrix of the system (including both
optical and mechanical components). Here we have defined
the superoperators

Lc = − i

h̄
[Ĥc, •] + κ

2
D[d̂]•,

Lm = − i

h̄
[Ĥm, •] + �m

2
{(n̄th + 1)D[b̂] + n̄thD[b̂†]}•,

Lom = − i

h̄
[Ĥom, •],

D[ô]• = 2ô • ô† − ô†ô • − • ô†ô = [ô, •ô†] + [ô•, ô†],

where • is a placeholder for the operator the superoperator
is acting upon, ô is a generic ladder operator, and we have
introduced n̄th = (eh̄ωm/kBT − 1)−1 as the average occupation
number of the mechanical resonator’s thermal bath at temper-
ature T . Note that we have assumed a zero-temperature bath
for the optical cavity.

We now transform into an interaction picture with density
matrix ρ̂ ′ = e−(Lc+Lm )t ρ̂ that evolves in time according to

∂ρ̂ ′

∂t
= e−(Lc+Lm )tLome(Lc+Lm )t ρ̂ ′ ≡ L′

om(t )ρ̂ ′, (5)

where we have simply used the product rule and Eq. (4).
This master equation can be formally integrated to obtain the
solution

ρ̂ ′(t ) = ρ̂ ′(0) +
∫ t

0
dτ L′

om(τ )ρ̂ ′(τ ), (6)

which can be substituted back into Eq. (5) and, by additionally
performing the trace over the cavity space, we arrive at the
master equation

∂ρ̂ ′
m

∂t
≡ ∂

∂t
Trc{ρ̂ ′(t )}

= Trc{L′
om(t )ρ̂ ′(0)} +

∫ t

0
dτ Trc{L′

om(t )L′
om(τ )ρ̂ ′(τ )},

(7)

where ρ̂ ′
m is the density matrix of the mechanical resonator in

the transformed interaction frame. Thus we have to calculate

L′
om = −iā[A(t )B(t ) − A†(t )B†(t )], (8)

with

A(t ) = e−Lct (d̂ + d̂†) • eLct ,

B(t ) = e−Lm t B̂ • eLm t ,

where we have introduced the mechanical operator B̂ =
g1(b̂ + b̂†) + g2

2 (2b̂†b̂ + b̂b̂ + b̂†b̂†). Note that B̂ and d̂ + d̂†

are Hermitian, but we have (ô•)† = •ô†, hence the appearance
of A†(t ) and B†(t ) in Eq. (8). Finally, to evaluate the superop-
erator L′

om, we also need the dynamics of the cavity operator
in this interaction picture:

A(t ) = d̂ • e−(i�+κ/2)t + d̂† • e(i�+κ/2)t

− • d̂†ei�t (e(κ/2)t − e−(κ/2)t ).

So far we have not made any approximations; the above
treatment resembles the standard derivation for a master equa-
tion. In what follows, we adiabatically eliminate the cavity
to obtain a reduced density matrix for the mechanics. This
implies the assumption that the cavity photons adiabatically
follow the phonon occupation, i.e., that κ � �th is fulfilled
[14], where �th is the thermal decoherence rate of the phonon
state in question [see Eq. (18) below]. Within this limit, we
assume that the optical cavity and mechanical resonator are
effectively uncorrelated at all times, so the density matrix fac-
torizes as ρ̂ ≡ ρ̂m ⊗ ρ̂c [56], where ρ̂c denotes the density ma-
trix of the cavity mode. We also make a Born approximation
and assume that the cavity mode fluctuations d̂ are not affected
by the dynamics of the mechanics, that is, we set ρ̂c(t ) ≈
ρ̂c(0). This means that the total density matrix remains a
product of the initial cavity density matrix and the mechanical
density matrix, i.e., ρ̂ ′(t ) ≈ ρ̂ ′

m(t ) ⊗ ρ̂c(0) ≡ ρ̂ ′
m(t ) ⊗ |0〉〈0|

(for the cavity in the vacuum state in this displaced frame).
Under this assumption the first term in Eq. (7) vanishes and
with

Trc{A(t )A(τ )|0〉〈0|} = Trc{A†(t )A(τ )|0〉〈0|}
= e−(i�+κ/2)(t−τ ),

Trc{A†(t )A†(τ )|0〉〈0|} = Trc{A(t )A†(τ )|0〉〈0|}
= e+(i�−κ/2)(t−τ )

we can evaluate the second term as

Trc{L′
om(t )L′

om(τ )ρ̂ ′(τ )}
= −N̄ [{B(t )B(τ ) − B†(t )B(τ )}e−(i�+κ/2)(t−τ )

+ H.c.]ρ̂ ′
m(τ ). (9)

Here

N̄ = κe

�2 + (κ/2)2

P

h̄ωd
(10)

is the average intracavity photon number, with κe and P the
optical cavity’s external decay rate and input power, respec-
tively. Using expression (9), the master equation yields (with
a change of variables t ′ = t − τ )

∂ρ̂ ′
m

∂t
= − N̄

∫ t

0
dt ′ρ̂ ′

m(t − t ′)[{B(t )B(t − t ′)

− B†(t )B(t − t ′)}e−(i�+κ/2)t ′ + H.c.], (11)

which we can transform back to the initial frame knowing that
ρ̂m(t ) = eLm t ρ̂ ′

m(t ) and move into an interaction picture with
respect to the free mechanical Hamiltonian. This gives us

∂ρ̂m

∂t
= −N̄

∫ t

0
dt ′ρ̂m(t − t ′)

({
g2

1[{b̂b̂† • −b̂† • b̂}e−iωm t ′

+ {b̂†b̂ • −b̂ • b̂†}e+iωm t ′] + g2
2[b̂†b̂b̂†b̂ • −b̂†b̂ • b̂†b̂]

+ g2
2

4
[{b̂b̂b̂†b̂† • −b̂†b̂† • b̂b̂}e−i2ωm t ′

+ {b̂†b̂†b̂b̂ • −b̂b̂ • b̂†b̂†}e+i2ωm t ′]
}
e−(i�+κ/2)t ′ + H.c.

)
+ �m

2
{(n̄th + 1)D[b̂] + n̄thD[b̂†]}ρ̂m(t ),
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where we have also used the rotating-wave approximation
[11]. In the next step we apply a Markov approximation and
solve the integrals for t → ∞, obtaining

∂ρ̂m

∂t
= − iN̄

h̄
[Ĥr, ρ̂m(t )] + N̄

(
g2

1 Re{χc(ωm )}D[b̂†]

+ g2
1 Re{χc(−ωm )}D[b̂] + g2

2 Re{χc(0)}D[b̂†b̂]

+ g2
2

4
Re{χc(2ωm )}D[b̂†b̂†]

+ g2
2

4
Re{χc(−2ωm )}D[b̂b̂]

)
ρ̂m(t )

+ �m

2
{(n̄th + 1)D[b̂] + n̄thD[b̂†]}ρ̂m(t ). (12)

Here χc(ω) = [i(� + ω) + κ/2]−1 is the susceptibility of the
optical cavity, with real and imaginary parts

Re{χc(ω)} = κ/2

(ω + �)2 + (κ/2)2
,

Im{χc(ω)} = − (ω + �)

(ω + �)2 + (κ/2)2
.

Note that Re{χc(ω)} = SNN (−ω)/2N̄ , with

SNN (ω) = N̄κ

(ω − �)2 + (κ/2)2
(13)

the photon number spectral density [11,12,43,57].
Equation (12) describes the dynamics of the mechanical

mode under the influence of the QND measurement, as well
as its contamination due to the linear coupling, counterro-
tating second order terms, and the influence of the thermal
environment. Here the coherent dynamics are described by the
Hamiltonian

Ĥr = h̄g2
1((( Im{χc(ωm )} + Im{χc(−ωm )})))b̂†b̂

+ h̄g2
2 Im{χc(0)}b̂†b̂b̂†b̂ + h̄g2

2

4
((( Im{χc(2ωm )}b̂b̂b̂†b̂†

+ Im{χc(−2ωm )}b̂†b̂†b̂b̂))),

where the first term describes a shift induced by the linear
coupling, while the second and third terms are of the Kerr type
(Lamb shifts). Note that this photon-mediated coherent inter-
action does not affect the phonon occupation, i.e., [Ĥr, b̂

†b̂] =
0. Furthermore, for zero detuning (� = 0) the above Hamilto-
nian simplifies to Ĥr = h̄g2

2 Im{χc(2ωm )}(b̂†b̂ + 1
2 ), resulting

in a static shift of the mechanical frequency. Therefore, the
mechanical occupation is not affected by the pure QND
measurement as expected, i.e., terms associated with the
susceptibility on resonance χc(0) in Eq. (12) do not change
the occupation.

We now use the fact that we can determine the proba-
bility pn of being in the nth Fock state of the mechanical
resonator by taking the inner product of the density matrix
using the phonon number state basis vectors, that is, pn(t ) =
〈n| ρ̂m(t ) |n〉. If we assume that we are in the initially in the
nth Fock state, such that pn(0) = 1, then the total rate at which
the mechanical resonator decoheres from this pure state can be

FIG. 2. Plot of the measurement rate �meas and thermal decoher-
ence rate �th, as well as the first- and second-order measurement-
induced transition rates �n+1 and �n+2, normalized to the thermal
decoherence rate of the ground state �0

th = n̄th�m for the first ten
Fock states of an optomechanical system. The system parame-
ters are ωm/2π = 2 GHz, �m/2π = 1 kHz (Qm = 2 × 106), n̄th =
0.25 (T ≈ 60 mK), � = 0, κ/2π = 500 MHz, N̄ = 100, g1/2π =
50 kHz, and g2/2π = 100 kHz. Here nmax ≈ 5 such that the first
five mechanical Fock states can be monitored continuously using the
QND measurement discussed in the text. The black crosses indicate
the measurement rate values used for the trajectory simulations in
Fig. 3.

found using Eq. (12). This results in∣∣∣∣dpn

dt

∣∣∣∣ =
∣∣∣∣〈n|∂ρ̂m

∂t
|n〉

∣∣∣∣ = �n+1 + �n−1 + �n+2 + �n−2 + �th,

where

�n+1 = (n + 1)g2
1SNN (−ωm ), (14)

�n−1 = ng2
1SNN (ωm ), (15)

�n+2 = (n + 1)(n + 2)
g2

2

4
SNN (−2ωm ), (16)

�n−2 = n(n − 1)
g2

2

4
SNN (2ωm ) (17)

are the rates at which the phonon state of the mechanical
resonator decoheres due to measurement-induced jumps from
n → n ± 1 and n → n ± 2, while

�th = �m[(n̄th + 1)n + n̄th(n + 1)] (18)

is the rate associated with the thermal decoherence of the
mechanical resonator’s nth Fock state due to coupling with
its dissipative bath [58,59]. We note that this thermal decoher-
ence rate can be decreased by reducing the thermal occupation
of the resonator’s bath as low as possible. Furthermore, as
can be seen in Fig. 2, all of the decoherence rates given by
Eqs. (14)–(18) decrease as we move to lower Fock states,
taking on their minimum values for a mechanical resonator
in its ground state.
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IV. QND MEASUREMENT CONDITIONS

In order to temporally resolve jumps between the mechan-
ical resonator’s phonon number states, one must measure the
system faster than it decoheres. In Ref. [14], it was shown by
Gangat et al. that for QND measurements of mechanical en-
ergy, the quadratic optomechanical measurement will collapse
the system into a phononic number state at a rate given by

�meas = C̄2�m, (19)

where C̄2 = N̄C2 is the second-order cavity-enhanced coop-
erativity of the system, given in terms of the second-order
single-photon cooperativity C2 = 4g2

2/κ�m. Comparing this
measurement rate to the decoherence rates found in Eqs. (14)–
(18), one finds the following hierarchy required to perform
optomechanical QND measurements of mechanical energy
quantization:

�meas � �th � �n±1,�n±2. (20)

The right-hand side of Eq. (20) ensures that thermal transi-
tions dominate over optically induced phonon jumps, lead-
ing to the linear-coupling condition �th � �n±1 and the
quadratic-coupling condition �th � �n±2. In this situation,
one would expect a phonon distribution resembling a thermal
state [14], exhibiting Bose-Einstein statistics with an average
phonon occupation of 〈n〉 = n̄th. However, if one were to enter
a regime where �th � �n±1,�n±2, phonon trajectories would
be dominated by optomechanically induced jumps, leading to
far more complex phonon statistics.

Also included in Eq. (20) is the fast-measurement condition
�meas � �th [14], which tells us that one must be able to
measure the phonon state of the resonator before it thermally
decoheres in order to resolve quantized mechanical energy
jumps [12,44,51,56]. To confirm this condition, we have
performed Monte Carlo simulations of mechanical phonon
trajectories according to the master equation given by (12)
[60]. As can be seen in Fig. 3, one can enter a regime where
the optomechanical measurement rate is fast enough to allow
for observation of quantum jumps in mechanical phonon
number. We note that the fast-measurement condition can also
be used to determine the largest Fock state number that can be
continuously monitored using this QND scheme as

nmax = C̄2 − n̄th

2n̄th + 1
. (21)

The above analysis is valid for any arbitrary Fock state of
the mechanical resonator. However, the minimum requirement
necessary to perform a QND measurement of the mechanical
oscillator’s energy will occur when the system is in its ground
state, as �th, �n±1, and �n±2 are all indeed minimized for n =
0 (see Fig. 2). In this situation, we are no longer concerned
with rates corresponding to a reduction in phonon number
(i.e., �n−1 and �n−2), as the mechanical ground state is unable
to emit phononic energy. Furthermore, in order to experimen-
tally resolve shifts in the optical cavity resonance frequency
due to the creation or annihilation of a single phonon, one
often turns to a phase-sensitive transduction scheme, such as
optical homodyne detection [61], where signal is maximized
at � = 0. Finally, we wish to operate in the sideband-resolved
regime (ωm � κ), which as we will see below is necessary for

FIG. 3. Monte Carlo simulations of the mechanical occupation
dynamics using the master equation given by (12) for three mea-
surement rates: (a) �meas/�th = 0.32, (b) �meas/�th = 3.2, and (c)
�meas/�th = 32. The remaining parameters are those found in Fig. 2.
In each plot we have included (a) a single trajectory, (b) two tra-
jectories, and (c) four trajectories. Graph (a) depicts the case where
thermally induced jumps dominate. Here a QND measurement is not
possible and the final detected signal would only give information
about the average phonon number. In contrast, if the inverse mea-
surement rate is the smallest time scale in the system, as seen in
(c), the QND readout of the occupation can occur fast enough to
resolve quantum jumps in phonon number. We note that in an actual
experiment, the phonon trajectory would be inferred from a physical
observable, such as the current from a homodyne detector [14].

QND measurements of the mechanical ground state. Under
these circumstances, the rate hierarchy of Eq. (20) becomes

�meas � �0
th � �1,�2, (22)

where �0
th = n̄th�m is the rate at which the ground state

of the mechanical resonator thermally decoheres, found by
taking n = 0 in Eq. (18). Furthermore, �1 and �2 are the
measurement-induced rates associated with transitions to the
first and second excited states from this ground state at � = 0
and are given by

�1 = N̄g2
1κ

ω2
m

= C̄1�mκ2

4ω2
m

, (23)

�2 = N̄g2
2κ

8ω2
m

= C̄2�mκ2

32ω2
m

, (24)

where similar to before we have introduced the first-order
cavity-enhanced cooperativity C̄1 = N̄C1 in terms of the
corresponding first-order single-photon cooperativity C1 =
4g2

1/κ�m. Using these two expressions for �1 and �2, the
limits in Eq. (22) can also be cast in terms of the first- and
second-order quantum cooperativities C1 = C̄1/n̄th and C2 =
C̄2/n̄th as

C2 � 1 � C1

(
κ2

4ω2
m

)
, C2

(
κ2

32ω2
m

)
. (25)

We now look to understand the fundamental limits associ-
ated with this type of QND measurement. First, by ensuring
that �meas � �2, that is to say, we can measure the phononic
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ground state of the system before an optically induced tran-
sition to the second excited state occurs, we arrive at the
condition 32ω2

m � κ2, which will certainly be satisfied for
a sideband-resolved optomechanical system. Physically, this
limit can be interpreted as cavity photons have a lifetime much
longer than the mechanical period, such that they sample the
mechanical motion over many cycles. This effectively aver-
ages out rapidly oscillating, transition-inducing second-order
terms in the Hamiltonian in favor of those that are constant in
time.

Furthermore, the requirement that �meas � �1 allows us to
set the following limit on the linear coupling with respect to
the quadratic coupling:

g2 � g1
κ

2ωm
. (26)

By satisfying this inequality, optomechanical QND measure-
ments of phonon number can be performed. Upon further
inspection of Eq. (26), we see that the sideband-resolution
condition discussed in the preceding paragraph aids in sup-
pressing the detrimental effect of linear coupling. A slightly
more subtle observation is that since g2 is proportional to
x2

ZPF while g1 is linear in xZPF, larger zero-point fluctuation
amplitudes (corresponding to smaller effective masses and
mechanical resonance frequencies) act to further relax the
condition of small linear coupling. We note that in order
to satisfy this limit, the relative strengths of g1 and g2 (or
equivalently G1 and G2) must be able to be tuned indepen-
dently. This can be done for the system considered here by
utilizing the symmetry between the optics and mechanics (see
Appendix B). However, this is not the case for quadratic
coupling resulting from the hybridization of two nearly de-
generate optical modes, as is found in MIM systems, where
g2 = g2

1/2ν, with ν the coupling rate between the two optical
modes (see Appendix A). In fact, one can put this relation
into Eq. (26) to recover the single-photon strong-coupling
requirement g1 � κ , where we have assumed 2ν � ωm as
is regularly done with MIM systems [47,49–51]. Therefore,
Eq. (26) provides a more general, less stringent condition for
QND measurements of phonon number using a quadratically
coupled optomechanical cavity.

As a final note, we point out that even if the above condi-
tions are met, one must still satisfy the ground state linear- and
quadratic-coupling conditions, i.e., �0

th � �1,�2. Therefore,
the greater the sideband resolution and linear coupling sup-
pression in a given system, the larger the difference between
�meas and both of the measurement-induced transition rates
�1 and �2, producing a larger range of ground-state thermal
decoherence rates that will satisfy Eq. (22). Furthermore, we
emphasize the importance of low thermal bath occupation.
Even if one can cool the mechanical mode to near its ground
state using active feedback cooling techniques [18,19,62,63],
it is not possible to reduce the thermal decoherence rate of
a given Fock state below �0

th = n̄th�m. Therefore, passive
cooling of an optomechanical system using a refrigeration
system [64–67] will likely be necessary to facilitate these
types of continuous QND measurements.

V. CONCLUSION

In this paper, we have investigated the limits involved with
performing QND measurements of the quantized mechanical
Fock states in an optomechanical cavity where quadratic
coupling arises due to shared symmetries between a single
optical and mechanical mode. By imposing the requirement
that one measures the phononic state of the system faster than
it thermally decoheres or transitions to another Fock state
via the optomechanical interaction itself, it was shown that
the single-photon strong-coupling condition associated with
MIM systems can be circumvented. Instead a less stringent
limit on the strength of the linear coupling was imposed,
along with optomechanical sideband resolution. With these
conditions satisfied, such an optomechanical system can be
used to perform quantum jump spectroscopy [35] on the ther-
mally induced transitions between mechanical quanta. One
could also consider using this type of QND measurement to
freeze the resonator into a given Fock state, prolonging its
coherence time via the quantum Zeno effect [68], as has been
demonstrated for trapped ions [69] and cold atoms [70,71].
Such an effect could be useful for a number of optomechanical
quantum information protocols [72,73], where long coher-
ence times are beneficial for applications such as quantum
memories [17,31] and transducers [74–77]. Furthermore, the
ability to observe and manipulate the decoherence of these
mesoscopic quantum mechanical states would provide a long-
sought-after experimental platform to aid in the understanding
of the elusive quantum-to-classical transition.

Finally, we note that the type of QND measurements
considered in this work could also be applied to electrome-
chanical systems, as was considered recently in Ref. [78],
where the authors arrive at results similar to Eq. (26) of this
paper.
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APPENDIX A: COMPARISON OF
MEMBRANE-IN-THE-MIDDLE AND WHISPERING
GALLERY MODE OPTOMECHANICAL SYSTEMS

1. Two-mode optomechanical Hamiltonian

Here we consider a mechanical resonator, with resonant
angular frequency ωm, position operator x̂, and phononic
annihilation (creation) operators b̂ (b̂†), that is simultaneously
coupled to two optical modes, each of which is character-
ized by the annihilation (creation) operators â1 (â†

1) and â2

(â†
2), as well as the position-dependent angular frequencies
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ω1(x̂) and ω2(x̂). We also allow these two optical modes
to couple to each other at a rate ν, which physically man-
ifests itself as a photon tunneling rate between the optical
modes to the left and right of the membrane in MIM systems
[44,47,50] or a backscattering rate between clockwise- and
counterclockwise-propagating modes in WGM optomechan-
ics [79]. The Hamiltonian for such an optomechanical system
(ignoring the ground-state energies, drive terms, and interac-
tion with the environment) will be given by

Ĥ = h̄ω1(x̂)â†
1â1 + h̄ω2(x̂)â†

2â2 + h̄ωmb̂†b̂

+ h̄ν(â†
1â2 + â

†
2â1), (A1)

where the last term describes the interaction between the two
optical modes, with a photon being annihilated in one and
simultaneously created in the other. As was done in Sec. II,
we expand each ith optical frequency to second order in
mechanical position as

ωi (x̂) = ωi + G
(ai )
1 x̂ + G

(ai )
2

2
x̂2, (A2)

where again we have the unperturbed optical frequency ωi , as
well as the first- and second-order optomechanical coupling
coefficients G

(ai )
1 and G

(ai )
2 , with the superscript (ai ) allowing

one to identify the coupling coefficient associated with each
optical mode. Inputting these expressions into Eq. (A1), we
expand the Hamiltonian of the system, resulting in

Ĥ = h̄ω1â
†
1â1 + h̄ω2â

†
2â2 + h̄ωmb̂†b̂

+ h̄ν(â†
1â2 + â

†
2â1) + h̄

(
G

(a1 )
1 â

†
1â1 + G

(a2 )
1 â

†
2â2

)
x̂

+ h̄

2

(
G

(a1 )
2 â

†
1â1 + G

(a2 )
2 â

†
2â2

)
x̂2. (A3)

Choosing the optical modes to be degenerate (in the absence
of coupling between them) such that ω1 = ω2 = ω0, we intro-
duce a basis with annihilation operators â± = (â1 ± â2)/

√
2,

which describe the supermodes that emerge due to the avoided
crossing between the two original degenerate optical modes.
The Hamiltonian in this supermode basis can then be written
as

Ĥ = h̄ω+â
†
+â+ + h̄ω−â

†
−â− + h̄ωmb̂†b̂

+ h̄

(
G

(a1 )
1 + G

(a2 )
1

2

)
(â†

+â+ + â
†
−â−)x̂

+ h̄

(
G

(a1 )
1 − G

(a2 )
1

2

)
(â†

+â− + â
†
−â+)x̂

+ h̄

(
G

(a1 )
2 + G

(a2 )
2

4

)
(â†

+â+ + â
†
−â−)x̂2

+ h̄

(
G

(a1 )
2 − G

(a2 )
2

4

)
(â†

+â− + â
†
−â+)x̂2, (A4)

where we now have the supermode frequencies ω± = ω0 ± ν.
The splitting between these two supermodes is ω+ − ω− =
2ν, such that each can be individually accessed if κ± < 2ν,
with κ± the linewidth of the mode corresponding to â±.

Up to this point, we have not made any assumptions
about the nature of the couplings in this system. In what
follows, we will investigate how the Hamiltonian given in
(A4) can be used to effectively describe an optomechanical
MIM system, as well as a mechanical element quadratically
coupled to an optical mode via shared symmetries in a WGM
optomechanical cavity.

2. Membrane-in-the-middle system

In a conventional MIM optomechanical system, quadratic
coupling arises due to the avoided crossing between the two
hybridized optical supermodes mentioned above. Therefore,
it is unnecessary to expand our optical frequencies to second
order and we take G

(ai )
2 = 0 here. Furthermore, due to the

geometry of MIM systems, as the mechanical element is
displaced, if the frequency of one optical mode increases, then
the other mode’s frequency will correspondingly decrease,
leading to G

(a1 )
1 = −G

(a2 )
1 = G1 [44,47]. As we will see, this

difference in sign between the linear coupling of the two
optical modes is crucial for generating quadratic coupling in
these systems, as well as enforcing the single-photon strong-
coupling condition associated with using them for QND mea-
surements of mechanical Fock states [49–51]. Applying these
conditions to (A4), we obtain the Hamiltonian for a MIM
system as [47–51]

ĤMIM = h̄ω+â
†
+â+ + h̄ω−â

†
−â− + h̄ωmb̂†b̂

+ h̄G1(â†
+â− + â

†
−â+)x̂. (A5)

In this form, it is not obvious where the quadratic coupling
arises in MIM systems. However, this system can be diago-
nalized, resulting in the Hamiltonian

ĤMIM = h̄ω′
+d̂

†
+d̂+ + h̄ω′

−d̂
†
−d̂− + h̄ωmb̂†b̂, (A6)

with corresponding eigenfrequencies

ω′
± = ω0 ±

√
ν2 + G2

1x̂
2. (A7)

In the limit ν � ωm, x̂ can be treated as a quasistatic variable
[47,49–51], allowing us to take G1x̂  ν. In this regime,
the lowering operators of the diagonalized modes can be
approximated as [50]

d̂+ ≈ a+ + G1x̂

2ν
â−,

d̂− ≈ G1x̂

2ν
a+ − a−,

corresponding to the approximate frequencies

ω′
± ≈ ω0 ±

(
ν + G2

1

2ν
x̂2

)
= ω± ± G′

2x̂
2. (A8)

In this form, it is clear that these diagonalized mode frequen-
cies exhibit a quadratic dependence on the position, with a
coupling coefficient G′

2 = G2
1/2ν. Furthermore, the operators

d̂± are formed by a linear combination of the supermode
operators â±, one of which is linearly coupled to the position
variable x̂. In this situation, even if we solely drive one
of the supermodes, photons will tunnel to its counterpart
and couple linearly to the mechanical resonator, causing its
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phononic Fock state to decohere. It is this process that leads to
the requirement of the single-photon strong-coupling regime
(g1 � κ) to perform QND measurements of phonon states in
MIM optomechanical systems [49–51].

3. Whispering gallery mode system

We now consider an optomechanical system whereby
the motion of the mechanical element shifts the frequen-
cies of both optical modes in the same direction. Such
a system could be realized as a nanomechanical res-
onator side coupled to an optical WGM cavity [53], with
the two degenerate optical modes being the clockwise-
and counterclockwise-propagating modes [79]. In this case,
the optomechanical coupling coefficients will be equal
in both sign and magnitude, leading to G

(a1 )
1 = G

(a2 )
1 =

G1 and G
(a1 )
2 = G

(a2 )
2 = G2. Note that we have opted to

keep second-order terms in this analysis due to the fact
that the avoided level crossing will no longer provide
quadratic optomechanical coupling. Inserting these coeffi-
cients into the interaction Hamiltonian given by (A4), we
find

ĤWGM = h̄ω+â
†
+â+ + h̄ω−â

†
−â− + h̄ωmb̂†b̂

+ h̄G1(â†
+â+ + â

†
−â−)x̂ + h̄G2

2
(â†

+â+ + â
†
−â−)x̂2.

(A9)

For this system, we are thus left with a Hamiltonian that
is already diagonalized. This has two very important conse-
quences. First, the quadratic coupling that arose due to the
avoided level crossing for the MIM system has vanished.
However, there still exists quadratic-coupling terms in our
Hamiltonian as we have expanded the optical cavity resonance
frequency to second order in mechanical position. Further-
more, as opposed to the MIM system, where the quadratic
coupling is proportional to the square of the linear coupling,
the second-order coupling coefficient here can be modified
independently of the linear coupling by tuning the relative
symmetry of the optical and mechanical modes (see Appendix
B). This leads us to the second important consequence of
this system: Since there is no linear mechanically mediated
coupling between the optical modes, QND measurements
using this system are not constrained by the stringent single-
photon strong-coupling regime. Instead, we obtain a limit on
the linear coupling strength G1 with respect to the quadratic
coupling G2, i.e., Eq. (26).

4. Mapping to a single optical mode

We conclude this appendix by noting that in the main
text, we assumed a single optical mode, as opposed to the
coupled two-mode system considered here. The effect of
adding a second, undriven optical mode to the system can
be included in the optically induced transition rates given by
Eqs. (14)–(17), (23), and (24) by taking N̄ = N̄+ + N̄− =
N̄1 + N̄2, where N̄i = 〈â†

i âi 〉 is simply the average photon
occupancy of the mode corresponding to âi . For such a
system, if one drives the â1 mode (call it the clockwise mode)
to a photon occupancy N̂1, then backscattering will cause
the â2 mode (counterclockwise mode) to be populated to an

occupancy [29]

N̄2 = ν2

�2 + (κ/2)2
N̄1. (A10)

For the � = 0 condition associated with the phase-sensitive
measurements discussed in Sec. IV, we then have N̄2 =
(2ν/κ )2N̄1. For 2ν  κ , N̄2  N̄1, that is, the counterclock-
wise mode is essentially unpopulated such that we can take
N̄ ≈ N̄1. Therefore, in this regime, we need only consider one
mode (in this case, the clockwise mode). We note that in this
situation a small but finite leakage of photons into the coun-
terclockwise mode will not lead to accelerated decoherence as
it did in the case of the MIM system [49] due to the fact that
counterclockwise photons interact with the mechanics in the
same way clockwise photons do.

For the case where 2ν � κ , the situation is complicated
by the fact that the clockwise and counterclockwise modes
hybridize into the two individually accessible symmetric
and antisymmetric modes corresponding to â±. Under these
circumstances, the resonant probing condition required for
phase-sensitive measurements results in � = ±ν. In either
case this leads to N̄2 ≈ N̄1, meaning that even though we
are only driving the clockwise mode, strong backscattering
ensures that in equilibrium both modes are equally populated.
Again, due to the fact that photons in the clockwise and coun-
terclockwise modes interact identically with the mechanics,
this photon redistribution does nothing to affect the optically
induced transition rates. However, as half of the photons now
reside in the unmonitored counterclockwise mode, the mea-
surement rate is halved. Therefore, a single mode treatment is
still valid in this regime, provided we account for this factor of
2 decrease in the measurement rate of the mechanical phonon
number.

APPENDIX B: OPTOMECHANICAL COUPLING USING
NONDEGENERATE PERTURBATION THEORY

Here we use the perturbative approach developed by John-
son et al. [80] to determine the first- and second-order op-
tomechanical coupling coefficients for mechanical systems
coupled to nondegenerate optical modes. In doing so, we will
show that it is possible, in principle, to completely eliminate
linear coupling in favor of quadratic coupling by exploiting
the symmetry of an optomechanical system.

We begin by considering a high-Q optical mode with
resonant angular frequency ωi such that we can approximate
the time dependence of the mode’s electric field as �Ei (�r, t ) =
eiωi t �Ei (�r ). Using Maxwell’s equations for a source-free di-
electric, as is relevant for the optomechanical systems consid-
ered here, one obtains the Helmholtz equation for the electric
field as

∇2 |Ei〉 = −ω2
i εr (�r )

c2
|Ei〉 , (B1)

where ∇2 is the Laplacian operator and the geometry of
the resonator is specified by its spatially varying relative
permittivity profile εr (�r ). We have also chosen to follow the
notation of Johnson et al. by representing the electric field of
the cavity mode using the Dirac bra-ket state vectors |Ei〉 =

043804-8



PHONON QUANTUM NONDEMOLITION MEASUREMENTS IN … PHYSICAL REVIEW A 98, 043804 (2018)

�Ei (�r ), which have an inner product defined as

〈Ei |Ej 〉 ≡
∫

�E∗
i (�r ) · �Ej (�r )dV, (B2)

where the integral is performed over the volume of the
optomechanical system [80]. With this definition, the op-
tical modes of the cavity are orthogonal in the sense that
〈Ei | εr |Ej 〉 = 〈Ei | εr |Ei〉 δij .

We now imagine introducing a small shift in the cav-
ity’s permittivity profile, resulting in εr (�r ) → εr (�r ) + δεr (�r ).
Treating the problem perturbatively, we determine the electric
fields |E′

i〉 and their corresponding frequencies ω′
i in this

shifted geometry by expanding to second order as

|E′
i〉 = ∣∣E(0)

i

〉 + ∣∣E(1)
i

〉 + ∣∣E(2)
i

〉
, (B3)

ω′
i = ω

(0)
i + ω

(1)
i + ω

(2)
i . (B4)

Here the superscript (0) indicates the original unperturbed
quantity, while the (1) and (2) indicate the first- and second-
order corrections, proportional to δεr and (δεr )2, respectively.
We note that these higher-order corrections to the electric field
are chosen to be orthogonal to the unperturbed field in the
same sense as before such that 〈E(0)

i | εr |E(n>0)
i 〉 = 0.

For perturbations that are optomechanical in nature, the
shift of the dielectric profile will be induced due to the motion
of a mechanical element. In this case, we can also expand the
optical mode frequency to second order in a similar fashion to
Eq. (2) as

ω′
i = ωi + G1�x + G2

2
(�x)2, (B5)

where �x is the resonator’s displacement from equilibrium.
Matching these terms with the ones found in Eq. (B4),
Eq. (B1) can be solved order by order to find [52,80–82]

ωi = ω
(0)
i , (B6)

G1 = ω(1)

�x
= −ω(0)

2

〈
E

(0)
i

∣∣ dεr

dx

∣∣E(0)
i

〉
〈
E

(0)
i

∣∣ εr

∣∣E(0)
i

〉 , (B7)

G2 = ω(2)

(�x)2
= 3G2

1

ωi

+
∑

ωj �=ωi

Gij , (B8)

where the sum is performed over all other optical cavity
modes and

Gij = ω3
i

ω2
i − ω2

j

∣∣〈E(0)
j

∣∣ dεr

dx

∣∣E(0)
i

〉∣∣2〈
E

(0)
i

∣∣ εr

∣∣E(0)
i

〉 〈
E

(0)
j

∣∣ εr

∣∣E(0)
j

〉 . (B9)

Upon inspection of Eq. (B7), we see that linear coupling is
proportional to the self-overlap of the optical mode, medi-

ated by the change in relative permittivity with respect to
the mechanical displacement x. Meanwhile, in Eq. (B8) the
quadratic coupling exhibits both a self-overlap term and a
term dependent on the cross coupling between the original
unperturbed modes and the spectrum of other nondegenerate
cavity modes (the case of quadratic coupling in degenerate
cavity modes was discussed in Appendix A). Therefore, lin-
ear optomechanical coupling will in principle be zero if the
field self-overlap term vanishes, that is, 〈E(0)

i | dεr

dx
|E(0)

i 〉 = 0
[52]. Furthermore, in this situation the quadratic coupling is
given by

G2 =
∑

ωj �=ωi

Gij , (B10)

with only the cross-coupling terms surviving. Therefore, pro-
vided these terms do not sum to zero, quadratic coupling can
be achieved in the absence of linear coupling [52].

To better understand the physical conditions that lead to
vanishing linear optomechanical coupling, we investigate the
case where the optomechanical interaction is due to shifting
the boundary conditions of the optical mode (as opposed to
the photoelastic effect [19]), pertinent to the majority of op-
tomechanical systems. For this situation, we find that [80,81]

〈Ei | dεr

dx
|Ej 〉 =

∫
[�q(�r ) · �u][�ε �E‖∗

i · �E‖
j

−�ε−1 �D⊥∗
i · �D⊥

j ]dA, (B11)

where �q(�r ) is the mechanical mode-shape function and �D =
ε0εr

�E is the electric displacement field. The integral is per-
formed over the surface of the unperturbed optical resonator
as defined by its unit normal vector �u. We have also intro-
duced the superscripts ‖ and ⊥ to denote the components
of the associated fields parallel and perpendicular to the
cavity surface. Finally, �ε = εd − εs and �ε−1 = ε−1

d − ε−1
s ,

where εd and εs are the relative permittivities of the op-
tomechanical device’s material and the surrounding medium,
respectively.

The expression in (B11) will be zero if the integrand is an
odd function with respect to the symmetry axes of the optical
cavity. In practice, this can be realized by implementing an
optical intensity profile that exhibits even symmetry, along
with a mechanical mode shape (after the dot product with the
unit surface normal) that demonstrates odd symmetry [52].
This amounts to having an optical field which is unable to
distinguish the direction of motion of the mechanics, that is,
the optical frequency shift is even with respect to mechanical
displacement. Therefore, the first term in the cavity expan-
sion (ignoring the zeroth-order term corresponding to the
unperturbed cavity frequency) must be proportional to (�x)2,
leading to quadratic optomechanical coupling.
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Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London) 556,
473 (2018).

[33] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M.
Asjad, A. A. Clerk, F. Massel, M. J. Wooley, and M. A.
Sillanpää, Nature (London) 556, 478 (2018).

[34] J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland,
Phys. Rev. Lett. 57, 1699 (1986).

[35] S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999).
[36] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M.

Raimond, and S. Haroche, Nature (London) 400, 239 (1999).
[37] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U.

B. Hoff, M. Brune, J.-M. Raimond, and S. Haroche, Nature
(London) 446, 297 (2007).

[38] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R.
Hemmer, J. Wrachtrup, and F. Jelezko, Science 329, 542 (2010).
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