959 research outputs found

    One-particle exchange in the double folded potential in a semiclassical approximation

    Get PDF
    The one-particle exchange in the double folded model is analyzed. To this aim the Extended Thomas-Fermi approach to the one-body density matrix is used. The nucleon- nucleon force with Yukawa, Gauss and Coulomb-type form factors are considered. The energy dependence of the exchange part of the double folded potential is investigated and a comparison of the present approach with former ones is carried out.Comment: 22 pages, LateX, and 6 PostScript figures, (submitted to J.of Phys.G

    Developing the Technique of Measurements of Magnetic Field in the CMS Steel Yoke Elements With Flux-Loops and Hall Probes

    Full text link
    Compact muon solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN large hadron collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in theCMSdetector, including the large ferromagnetic parts of the yoke, is required. To measure the field in and around ferromagnetic parts, a set of flux-loops and Hall probe sensors will be installed on several of the steel pieces. Fast discharges of the solenoid during system commissioning tests will be used to induce voltages in the flux-loops that can be integrated to measure the flux in the steel at full excitation of the solenoid. The Hall sensors will give supplementary information on the axial magnetic field and permit estimation of the remanent field in the steel after the fast discharge. An experimental R&D program has been undertaken, using a test flux-loop, two Hall sensors, and sample disks made from the same construction steel used for the CMS magnet yoke. A sample disc, assembled with the test flux-loop and the Hall sensors, was inserted between the pole tips of a dipole electromagnet equipped with a computer-controlled power supply to measure the excitation of the steel from full saturation to zero field. The results of the measurements are presented and discussed.Comment: 6 pages, 8 figures, 6 reference

    Two-photon double ionization of neon using an intense attosecond pulse train

    Full text link
    We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 μ\muJ, a central energy of 35 eV and a total bandwidth of 30\sim30 eV. The APT is focused by broadband optics in a neon gas target to an intensity of 310123\cdot10^{12} W\cdotcm2^{-2}. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the associated electron correlation effects

    3D Magnetic Analysis of the CMS Magnet

    Get PDF
    The CMS magnetic system consists of a super-conducting solenoid coil, 12.5 m long and 6 m free bore diameter, and of an iron flux-return yoke, which includes the central barrel, two end-caps and the ferromagnetic parts of the hadronic forward calorimeter. The magnetic flux density in the center of the solenoid is 4 T. To carry out the magnetic analysis of the CMS magnetic system, several 3D models were developed to perform magnetic field and force calculations using the Vector Fields code TOSCA. The analysis includes a study of the general field behavior, the calculation of the forces on the coil generated by small axial, radial displacements and angular tilts, the calculation of the forces on the ferromagnetic parts, the calculation of the fringe field outside the magnetic system, and a study of the field level in the chimneys for the current leads and the cryogenic lines. A procedure to reconstruct the field inside a cylindrical volume starting from the values of the magnetic flux density on the cylinder surface is considered. Special TOSCA-GEANT interface tools have being developed to input the calculated magnetic field into the detector simulation package.Comment: 4 pages, 6 figures, 1 equation, 14 reference

    Tracing Electron-Ion Recombination in Nanoplasmas Produced by Extreme- Ultraviolet Irradiation of Rare-Gas Clusters

    Get PDF
    We investigate electron-ion recombination in nanoplasmas produced by the ionization of rare-gas clusters with intense femtosecond extreme-ultraviolet (XUV) pulses. The relaxation dynamics following XUV irradiation is studied using time-delayed 790-nm pulses, revealing the generation of a large number of excited atoms resulting from electron-ion recombination. In medium-sized Ar-Xe clusters, these atoms are preferentially created in the Xe core within 10 ps after the cluster ionization. The ionization of excited atoms serves as a sensitive probe for monitoring the cluster expansion dynamics up to the ns time scale

    Cluster emission and phase transition behaviours in nuclear disassembly

    Get PDF
    The features of the emissions of light particles (LP), charged particles (CP), intermediate mass fragments (IMF) and the largest fragment (MAX) are investigated for 129Xe^{129}Xe as functions of temperature and 'freeze-out' density in the frameworks of the isospin-dependent lattice gas model and the classical molecular dynamics model. Definite turning points for the slopes of average multiplicity of LP, CP and IMF, and of the mean mass of the largest fragment (AmaxA_{max}) are shown around a liquid-gas phase transition temperature and while the largest variances of the distributions of LP, CP, IMF and MAX appear there. It indicates that the cluster emission rate can be taken as a probe of nuclear liquid--gas phase transition. Furthermore, the largest fluctuation is simultaneously accompanied at the point of the phase transition as can be noted by investigating both the variances of their cluster multiplicity or mass distributions and the Campi scatter plots within the lattice gas model and the molecular dynamics model, which is consistent with the result of the traditional thermodynamical theory when a phase transition occurs.Comment: replace nucl-th/0103009 due to the technique problem to access old versio

    The Multifragmentation Freeze--Out Volume in Heavy Ion Collisions

    Full text link
    The reduced velocity correlation function for fragments from the reaction Fe + Au at 100 A~MeV bombarding energy is investigated using the dynamical--statistical approach QMD+SMM and compared to experimental data to extract the Freeze--Out volume assuming simultaneous multifragmentation.Comment: 8 pages; 3 uuencoded figures available with figures command, LateX, UCRL-J-1157

    Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction

    Full text link
    Advanced synchrotron radiation focusing down to a size of 300 nm has been used to visualize nanoscale phase separation in the K0.8Fe1.6Se2 superconducting system using scanning nanofocus single-crystal X-ray diffraction. The results show an intrinsic phase separation in K0.8Fe1.6Se2 single crystals at T< 520 K, revealing coexistence of i) a magnetic phase characterized by an expanded lattice with superstructures due to Fe vacancy ordering and ii) a non-magnetic phase with an in-plane compressed lattice. The spatial distribution of the two phases at 300 K shows a frustrated or arrested nature of the phase separation. The space-resolved imaging of the phase separation permitted us to provide a direct evidence of nanophase domains smaller than 300 nm and different micrometer-sized regions with percolating magnetic or nonmagnetic domains forming a multiscale complex network of the two phases.Comment: 5 pages, 4 figure

    Transition from damage to fragmentation in collision of solids

    Full text link
    We investigate fracture and fragmentation of solids due to impact at low energies using a two-dimensional dynamical model of granular solids. Simulating collisions of two solid discs we show that, depending on the initial energy, the outcome of a collision process can be classified into two states: a damaged and a fragmented state with a sharp transition in between. We give numerical evidence that the transition point between the two states behaves as a critical point, and we discuss the possible mechanism of the transition.Comment: Revtex, 12 figures included. accepted by Phys. Rev.

    Indium selenide: An insight into electronic band structure and surface excitations

    Get PDF
    We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at similar to 1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed
    corecore