15,032 research outputs found

    Apparent Clustering of Intermediate-redshift Galaxies as a Probe of Dark Energy

    Full text link
    We show the apparent redshift-space clustering of galaxies in redshift range of 0.2--0.4 provides surprisingly useful constraints on dark energy component in the universe, because of the right balance between the density of objects and the survey depth. We apply Fisher matrix analysis to the the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), as a concrete example. Possible degeneracies in the evolution of the equation of state (EOS) and the other cosmological parameters are clarified.Comment: 5 pages, 3 figures, Phys.Rev.Lett., replaced with the accepted versio

    Optical generation of hybrid entangled state via entangling single-photon-added coherent state

    Full text link
    We propose a feasible scheme to realize the optical entanglement of single-photon-added coherent state (SPACS) and show that, besides the Sanders entangled coherent state, the entangled SPACS also leads to new forms of hybrid entanglement of quantum Fock state and classical coherent state. We probe the essential difference of two types of hybrid entangled state (HES). This HES provides a novel link between the discrete- and the continuous-variable entanglement in a natural way.Comment: 6 pages, 2 figure

    Progress in thin film GaAs solar cells

    Get PDF
    Solar cells using polycrystalline films of gallium arsenid

    Compton Heating of the Intergalactic Medium by the Hard X-ray Background

    Get PDF
    High-resolution hydrodynamics simulations of the Ly-alpha forest in cold dark matter dominated cosmologies appear to predict line widths that are substantially narrower than those observed. Here we point out that Compton heating of the intergalactic gas by the hard X-ray background (XRB), an effect neglected in all previous investigations, may help to resolve this discrepancy. The rate of gain in thermal energy by Compton scattering will dominate over the energy input from hydrogen photoionization if the XRB energy density is 0.2x/ times higher than the energy density of the UV background at a given epoch, where x is the hydrogen neutral fraction in units of 1e-6 and is the mean X-ray photon energy in units of m_ec^2. The numerical integration of the time-dependent rate equations shows that the intergalactic medium approaches a temperature of about 1.5e4 K at z>3 in popular models for the redshift evolution of the extragalactic background radiation. The importance of Compton heating can be tested experimentally by measuring the Ly-alpha line-width distribution as a function of redshift, thus the Lyman-alpha forest may provide a useful probe of the evolution of the XRB at high redshifts.Comment: LaTeX, 10 pages, 2 figures, final version to be published in the Ap

    CD4+ T-cell responses to Epstein-Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes

    Get PDF
    Epstein-Barr virus nuclear antigen EBNA1, the one viral protein uniformly expressed in nasopharyngeal carcinoma (NPC), represents a prime target for T-cell-based immunotherapy. However, little is known about the EBNA1 epitopes, particularly CD4 epitopes, presented by HLA alleles in Chinese people, the group at highest risk for NPC. We analyzed the CD4+^+ T-cell responses to EBNA1 in 78 healthy Chinese donors and found marked focusing on a small number of epitopes in the EBNA1 C-terminal region, including a DP5- restricted epitope that was recognized by almost half of the donors tested and elicited responses able to recognize EBNA1-expressing, DP5-positive target cells

    Giant Conductance Oscillations In Mesoscopic Andreev Interferometers

    Full text link
    We analyze the electrical conductance G(ϕ)G(\phi) of a two-dimensional, phase coherent structure in contact with two superconductors, which is known to be an oscillatory function of the phase difference ϕ\phi between the superconductors. It is predicted that for a metallic sample, the amplitude of oscillation is enhanced by placing a normal barrier at the interface and that, by tuning the strength of the barrier, can be orders of magnitude greater than values observed in recent experiments. Giant oscillations can also be obtained without a barrier, provided a crucial sum rule is broken. This can be achieved by disorder induced normal scattering. In the absence of zero phase inter-channel scattering, the conductance possesses a zero phase minimum.Comment: 4 pages of Revtex, 6 figures available on reques

    Relativistic Hartree-Fock-Bogoliubov theory with Density Dependent Meson-Nucleon Couplings

    Full text link
    Relativistic Hartree-Fock-Bogoliubov (RHFB) theory with density-dependent meson-nucleon couplings is presented. The integro-differential RHFB equations are solved by expanding the different components of the quasi-particle spinors in the complete set of eigen-solutions of the Dirac equations with Woods-Saxon potentials. Using the finite-range Gogny force D1S as an effective interaction in the pairing channel, systematic RHFB calculations are performed for Sn isotopes and N=82 isotones. It is demonstrated that an appropriate description of both mean field and pairing effects can be obtained within RHFB theory with finite range Gogny pairing forces. Better systematics are also found in the regions from the stable to the neutron-rich side with the inclusion of Fock terms, especially in the presence of ρ\rho-tensor couplings.Comment: 11 pages, 2 tables and 4 figure

    Time-Resolved Intraband Relaxation of Strongly-Confined Electrons and Holes in Colloidal PbSe Nanocrystals

    Full text link
    The relaxation of strongly-confined electrons and holes between 1P and 1S levels in colloidal PbSe nanocrystals has been time-resolved using femtosecond transient absorption spectroscopy. In contrast to II-VI and III-V semiconductor nanocrystals, both electrons and holes are strongly confined in PbSe nanocrystals. Despite the large electron and hole energy level spacings (at least 12 times the optical phonon energy), we consistently observe picosecond time-scale relaxation. Existing theories of carrier relaxation cannot account for these experimental results. Mechanisms that could possibly circumvent the phonon bottleneck in IV-VI quantum dots are discussed
    corecore