73 research outputs found

    Andreev Level Qubit

    Full text link
    We investigate the dynamics of a two-level Andreev bound state system in a transmissive quantum point contact embedded in an rf-SQUID. Coherent coupling of the Andreev levels to the circulating supercurrent allows manipulation and read out of the level states. The two-level Hamiltonian for the Andreev levels is derived, and the effect of interaction with the quantum fluctuations of the induced flux is studied. We also consider an inductive coupling of qubits, and discuss the relevant SQUID parameters for qubit operation and read out.Comment: 4 pages, 1 figur

    SegSlice: Towards a New Class of Secure Programming Primitives for Trustworthy Platforms

    Full text link
    Abstract. The TPM is a fairly passive entity. As a result, it can be difficult to involve the TPM in measurements of software trustworthiness beyond simple load-time hashing of static program code. We suggest an approach to dynamic, runtime measurement of software trustworthiness properties as they relate to code-data owernship relationships. We outline a system, SegSlice, that actively involves the TPM in fine-grained labeling and measurement of code slices and the data that these slices operate on. SegSlice requires no changes to x86 hardware, and it relies on the relatively underused x86 segmentation mechanism to mediate access to data events.

    DC current through a superconducting two-barrier system

    Full text link
    We analyze the influence of the structure within a SNS junction on the multiple Andreev resonances in the subgap I-V characteristics. Coherent interference processes and incoherent propagation in the normal region are considered. The detailed geometry of the normal region where the voltage drops in superconducting contacts can lead to observable effects in the conductance at low voltages.Comment: 11 pages, including 7 postscript file

    Theory of AC Josepson Effect in Superconducting Constrictions

    Full text link
    We have developed a microscopic theory of ac Josephson effect in short ballistic superconducting constrictions with arbitrary electron transparency and in constrictions with diffusive electron transport. The theory is valid for arbitrary miscroscopic structure of the superconducting electrodes of the constriction. As applications of the theory we study smearing of the subgap current singularities by pair-breaking effects and also the structure of these singularities in the constrictions between the composite S/N electrodes with the proximity-induced gap in the normal layer.Comment: 11 pages, RevTex, 3 figures available on reques

    Circuit theory of multiple Andreev reflections in diffusive SNS junctions: the incoherent case

    Full text link
    The incoherent regime of Multiple Andreev Reflections (MAR) is studied in long diffusive SNS junctions at applied voltages larger than the Thouless energy. Incoherent MAR is treated as a transport problem in energy space by means of a circuit theory for an equivalent electrical network. The current through NS interfaces is explained in terms of diffusion flows of electrons and holes through tunnel and Andreev resistors. These resistors in diffusive junctions play roles analogous to the normal and Andreev reflection coefficients in OTBK theory for ballistic junctions. The theory is applied to the subharmonic gap structure (SGS); simple analytical results are obtained for the distribution function and current spectral density for the limiting cases of resistive and transparent NS interfaces. In the general case, the exact solution is found in terms of chain-fractions, and the current is calculated numerically. SGS shows qualitatively different behavior for even and odd subharmonic numbers, and the maximum slopes of the differential resistance correspond to the gap subharmonics. The influence of inelastic scattering on the subgap anomalies of the differential resistance is analyzed.Comment: 14 pages, 9 figures, title and text revised, to appear in PR

    ac Josephson effect in superconducting d-wave junctions

    Full text link
    We study theoretically the ac Josephson effect in superconducting planar d-wave junctions. The insulating barrier assumed to be present between the two superconductors may have arbitrary strength. Many properties of this system depend on the orientation of the d-wave superconductor: we calculate the ac components of the Josephson current. In some arrangements there is substantial negative differential conductance due to the presence of mid-gap states. We study how robust these features are to finite temperature and also comment on how the calculated current-voltage curves compare with experiments. For some other configurations (for small barrier strength) we find zero-bias conductance peaks due to multiple Andreev reflections through midgap states. Moreover, the odd ac components are strongly suppressed and even absent in some arrangements. This absence will lead to a doubling of the Josephson frequency. All these features are due to the d-wave order parameter changing sign when rotated 9090^{\circ}. Recently, there have been several theoretical reports on parallel current in the d-wave case for both the stationary Josephson junction and for the normal metal-superconductor junction. Also in our case there may appear current density parallel to the junction, and we present a few examples when this takes place. Finally, we give a fairly complete account of the method used and also discuss how numerical calculations should be performed in order to produce current-voltage curves

    Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts

    Full text link
    We analyze the current in a superconducting point contact of arbitrary transmission in the presence of a microwave radiation. The interplay between the ac Josephson current and the microwave signal gives rise to Shapiro steps at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and \omega_r is the radiation frequency. The subharmonic steps (n different from 1) are a consequence of the ocurrence of multiple Andreev reflections (MAR) and provide an unambiguous signature of the peculiar ac Josephson effect at high transmission. Moreover, the dc current exhibits a rich subgap structure due to photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure

    LMS-Verify: abstraction without regret for verified systems programming

    Get PDF
    Performance critical software is almost always developed in C, as programmers do not trust high-level languages to deliver the same reliable performance. This is bad because low-level code in unsafe languages attracts security vulnerabilities and because development is far less productive, with PL advances mostly lost on programmers operating under tight performance constraints. High-level languages provide memory safety out of the box, but they are deemed too slow and unpredictable for serious system software. Recent years have seen a surge in staging and generative programming: the key idea is to use high-level languages and their abstraction power as glorified macro systems to compose code fragments in first-order, potentially domain-specific, intermediate languages, from which fast C can be emitted. But what about security? Since the end result is still C code, the safety guarantees of the high-level host language are lost. In this paper, we extend this generative approach to emit ACSL specifications along with C code. We demonstrate that staging achieves ``abstraction without regret'' for verification: we show how high-level programming models, in particular higher-order composable contracts from dynamic languages, can be used at generation time to compose and generate first-order specifications that can be statically checked by existing tools. We also show how type classes can automatically attach invariants to data types, reducing the need for repetitive manual annotations. We evaluate our system on several case studies that varyingly exercise verification of memory safety, overflow safety, and functional correctness. We feature an HTTP parser that is (1) fast (2) high-level: implemented using staged parser combinators (3) secure: with verified memory safety. This result is significant, as input parsing is a key attack vector, and vulnerabilities related to HTTP parsing have been documented in all widely-used web servers.</jats:p
    corecore