1,337 research outputs found
Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers
Polarized Neutron Reflectometry and magnetometry measurements have been used
to obtain a comprehensive picture of the magnetic structure of a series of
La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with
varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm).
While LSMO presents a few magnetically frustrated monolayers at the interfaces
with PCMO, in the latter a magnetic contribution due to FM inclusions within
the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the
FM moment occurs at the matching between layer thickness and cluster size,
where the FM clusters would find the optimal strain conditions to be
accommodated within the "non-FM" material. These results have important
implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR
How far does the analogy between causal horizon-induced thermalization with the standard heat bath situation go?
After a short presentation of KMS states and modular theory as the unifying
description of thermalizing systems we propose the absence of transverse vacuum
fluctuations in the holographic projections as the mechanism for an area
behavior (the transverse area) of localization entropy as opposed to the volume
dependence of ordinary heat bath entropy. Thermalization through causal
localization is not a property of QM, but results from the omnipresent vacuum
polarization in QFT and does not require a Gibbs type ensemble avaraging
(coupling to a heat bath).Comment: 10 pages, based on talk given at the 2002 Londrina Winter Schoo
Trace-contrast models for capture-recapture without capture histories
This work was funded by the Royal Society of New Zealand through Marsden Grant 14-UOA-155. Ben Stevenson was supported by EPSRC/NERC Grant EP/1000917/1.Capture-recapture studies increasingly rely upon natural tags that allow animals to be identified by features such as coat markings, DNA profiles, acoustic profiles, or spatial locations. These innovations greatly increase the number of capture samples achievable and enable capture-recapture estimation for many inaccessible and elusive species. However, natural features are invariably imperfect as indicators of identity. Drawing on the recently developed Palm likelihood approach to parameter estimation in clustered point processes, we propose a new estimation framework based on comparing pairs of detections, which we term the trace-contrast framework. Importantly, no reconstruction of capture histories is needed. We show that we can achieve accurate, precise, and computationally fast inference. We illustrate the methods with a camera-trap study of a partially marked population of ship rats (Rattus rattus) in New Zealand.Publisher PDFPeer reviewe
Pattern languages in HCI: A critical review
This article presents a critical review of patterns and pattern languages in human-computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for developing and communicating information and knowledge to support good design. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to interaction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI
Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile
Annealing can increase the Curie temperature and net magnetization in
uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped
with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped
(Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after
annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We
observe no increase in Curie temperature or net magnetization upon annealing.
Furthermore, PNR measurements indicate that annealing produces minimal
differences in the depth-dependent magnetization, as both as-grown and annealed
films feature a significant magnetization gradient. These results suggest that
the GaAs cap inhibits redistribution of interstitial Mn impurities during
annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter
Carrier-mediated antiferromagnetic interlayer exchange coupling in diluted magnetic semiconductor multilayers GaMnAs/GaAs:Be
We use neutron reflectometry to investigate the interlayer exchange coupling
between GaMnAs ferromagnetic semiconductor layers separated
by non-magnetic Be-doped GaAs spacers. Polarized neutron reflectivity measured
below the Curie temperature of GaMnAs reveals a
characteristic splitting at the wave vector corresponding to twice the
multilayer period, indicating that the coupling between the ferromagnetic
layers are antiferromagnetic (AFM). When the applied field is increased to
above the saturation field, this AFM coupling is suppressed. This behavior is
not observed when the spacers are undoped, suggesting that the observed AFM
coupling is mediated by charge carriers introduced via Be doping. The behavior
of magnetization of the multilayers measured by DC magnetometry is consistent
with the neutron reflectometry results.Comment: 4 pages, 4 figure
- …