6,899 research outputs found

    Gamma-ray burst beaming: a universal configuration with a standard energy reservoir?

    Get PDF
    We consider a gamma-ray burst (GRB) model based on an anisotropic fireball with an axisymmetric power-law distribution of the energy per solid angle with index -k, and allow for the observer's viewing direction being at an arbitrary angle with respect to the jet axis. This model can reproduce the key features expected from the conventional on-axis uniform jet models, with the novelty that the achromatic break time in the broadband afterglow lightcurves corresponds to the epoch when the relativistic beaming angle is equal to the viewing angle rather than to the jet half opening angle. If all the GRB fireballs have such a similar energy distribution form with 1.5 < k < (or \sim) 2, GRBs may be modeled by a quasi-universal beaming configuration, and an approximately standard energy reservoir. The conclusion also holds for some other forms of angular energy distributions, such as the Gaussian function.Comment: Slightly expanded version accepted for publication in Ap

    Pion charge form factor and constraints from space-time translations

    Full text link
    The role of Poincar\'e covariant space-time translations is investigated in the case of a relativistic quantum mechanics approach to the pion charge form factor. It is shown that the related constraints are generally inconsistent with the assumption of a single-particle current, which is most often referred to. The only exception is the front-form approach with q+=0q^+=0. How accounting for the related constraints, as well as restoring the equivalence of different RQM approaches in estimating form factors, is discussed. Some extensions of this work and, in particular, the relationship with a dispersion-relation approach, are presented. Conclusions relative to the underlying dynamics are given.Comment: 6 pages, 2 figures, proceedings of the QNP2009 international conference (Beijing, oct. 2009), to be published in Chinese Physics

    Chiral expansion of the π0γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    Multiplier-continuation algorthms for constrained optimization

    Get PDF
    Several path following algorithms based on the combination of three smooth penalty functions, the quadratic penalty for equality constraints and the quadratic loss and log barrier for inequality constraints, their modern counterparts, augmented Lagrangian or multiplier methods, sequential quadratic programming, and predictor-corrector continuation are described. In the first phase of this methodology, one minimizes the unconstrained or linearly constrained penalty function or augmented Lagrangian. A homotopy path generated from the functions is then followed to optimality using efficient predictor-corrector continuation methods. The continuation steps are asymptotic to those taken by sequential quadratic programming which can be used in the final steps. Numerical test results show the method to be efficient, robust, and a competitive alternative to sequential quadratic programming

    Probing the birth of fast rotating magnetars through high-energy neutrinos

    Full text link
    We investigate the high-energy neutrino emission expected from newly born magnetars surrounded by their stellar ejecta. Protons might be accelerated up to 0.1-100 EeV energies possibly by, e.g., the wave dissipation in the winds, leading to hadronic interactions in the stellar ejecta. The resulting PeV-EeV neutrinos can be detected by IceCube/KM3Net with a typical peak time scale of a few days after the birth of magnetars, making the characteristic soft-hard-soft behavior. Detections would be important as a clue to the formation mechanism of magnetars, although there are ambiguities coming from uncertainties of several parameters such as velocity of the ejecta. Non-detections would also lead to useful constraints on the scenario.Comment: 5 pages, 3 figures, accepted for publication in PR

    Periodic Variation of Stress in Sputter Deposited Si/WSi2 Multilayers

    Full text link
    A tension increment after sputter deposition of 1 nm of WSi2 onto sputtered Si was observed at low Ar gas pressures. Wafer curvature data on multilayers were found to have a periodic variation corresponding to the multilayer period, and this permitted statistical analyses to improve the sensitivity to small stresses. The observation of tension instead of compression in the initial stage of growth is new and a model invoking surface rearrangement is invoked. The data also bear on an unusual surface smoothing phenomena for sputtered Si surfaces caused by the sputter deposition of WSi2 . We furthermore report that for low Ar pressures the Si layers are the predominant source of built-up stress

    Highly Charged Ion (HCI) Clocks: Frontier candidates for testing variation of fine-structure constant

    Full text link
    Attempts are made to unify gravity with the other three fundamental forces of nature. As suggested by higher dimensional models, this unification may require space and time variation of some dimensionless fundamental constants. In this scenario, probing temporal variation of the electromagnetic fine structure constant (α=e2c\alpha= \frac{e^2} {\hbar c}) in low energy regimes at the cosmological time scale is of immense interest. Atomic clocks are ideal candidates for probing α\alpha variation because their transition frequencies are measured to ultra-high precision accuracy. Since atomic transition frequencies are functions of α\alpha, measurements of clock frequencies at different temporal and spatial locations can yield signatures to ascertain such conjecture. Electrons in highly charged ions (HCIs) experience unusually enhanced relativistic effects. Hence level-crossings can be observed often in these ions compared to their isoelectronic neutral or singly charged atomic systems. Such a process features by their more significant relativistic sensitive coefficients (qq) of atomic transitions. For unambiguous detection of subtle changes in the transition frequencies due to α\alpha variation, it would be judicious to contemplate transitions for which qq values are enormous. HCIs are considered one of the most suitable candidates for making atomic clocks as they are the least sensitive to external electromagnetic fields owing to their exceptionally contracted orbitals. The first HCI clock has been realized, but its accuracy is much less than the counter optical clocks based on neutral atoms and singly charged ions. The realization of HCI clocks can add an extra dimension to investigating fundamental physics. In this work, we survey HCIs suitable for clock candidates on the grounds of general features, including their potential to probe temporal variation of α\alpha.Comment: 35 pages, 12 table

    Perancangan Buku Essay Foto Kerajinan Cukli Lombok

    Full text link
    Indonesia merupakan Negara yang kaya akan berbagai sumber daya alam. Keindahan alamnya pun luar biasa dan tidak semua Negara memiliki keindahan dan kekayaan alam seperti yang dimiliki oleh Negara ini.Begitu juga dengan pulau Lombok yang memiliki keindahan alam dan memiliki berbagai kerajinan yang memanjakan mata.Kerajinan Cukli merupakan kerajinan asli dari Lombok dan sangat digemari oleh turis mancanegara.Sayangnya masyarakat lokal banyak yang tidak mengetahui tentang adanya kerajinan ini. Oleh karena itu dibuatlah perancangan ini yang bertujuan untuk mengenalkan kerajinan Cukli Lombok pada masyarakat yang tidak mengetahui apa kerajinan Cukli tersebut

    Testing Microfluidic Fully Programmable Valve Arrays (FPVAs)

    Full text link
    Fully Programmable Valve Array (FPVA) has emerged as a new architecture for the next-generation flow-based microfluidic biochips. This 2D-array consists of regularly-arranged valves, which can be dynamically configured by users to realize microfluidic devices of different shapes and sizes as well as interconnections. Additionally, the regularity of the underlying structure renders FPVAs easier to integrate on a tiny chip. However, these arrays may suffer from various manufacturing defects such as blockage and leakage in control and flow channels. Unfortunately, no efficient method is yet known for testing such a general-purpose architecture. In this paper, we present a novel formulation using the concept of flow paths and cut-sets, and describe an ILP-based hierarchical strategy for generating compact test sets that can detect multiple faults in FPVAs. Simulation results demonstrate the efficacy of the proposed method in detecting manufacturing faults with only a small number of test vectors.Comment: Design, Automation and Test in Europe (DATE), March 201
    corecore