48 research outputs found

    Aging and passivation of magnetic properties in Co/Gd bilayers

    Get PDF
    Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motion and single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayers with various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for capping as long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications.Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motionand single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayerswith various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for cappingas long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications

    Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering

    Get PDF
    We analyse the impact of growth conditions on asymmetric magnetic bubble expansion under in-plane field in ultrathin Pt / Co / Pt films. Specifically, using sputter deposition we vary the Ar pressure during the growth of the top Pt layer. This induces a large change in the interfacial structure as evidenced by a factor three change in the effective perpendicular magnetic anisotropy. Strikingly, a discrepancy between the current theory for domain-wall propagation based on a simple domain-wall energy density and our experimental results is found. This calls for further theoretical development of domain-wall creep under in-plane fields and varying structural asymmetry.Comment: 16 pages, 3 figure

    Aging and passivation of magnetic properties in Co/Gd bilayers

    Get PDF
    Synthetic ferrimagnets based on Co and Gd bear promise for directly bridging the gap between volatile information in the photonic domain and non-volatile information in the magnetic domain, without the need for any intermediary electronic conversion. Specifically, these systems exhibit strong spin-orbit torque effects, fast domain wall motion and single-pulse all-optical switching of the magnetization. An important open challenge to bring these materials to the brink of applications is to achieve long-term stability of their magnetic properties. In this work, we address the time-evolution of the magnetic moment and compensation temperature of magnetron sputter grown Pt/Co/Gd trilayers with various capping layers. Over the course of three months, the net magnetic moment and compensation temperature change significantly, which we attribute to quenching of the Gd magnetization. We identify that intermixing of the capping layer and Gd is primarily responsible for this effect, which can be alleviated by choosing nitrides for capping as long as reduction of nitride to oxide is properly addressed. In short, this work provides an overview of the relevant aging effects that should be taken into account when designing synthetic ferrimagnets based on Co and Gd for spintronic applications.Comment: 9 pages, 5 figure

    Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass

    Get PDF
    3 pages, 3 figures.We report on the mechanisms responsible for the formation of optical waveguides upon femtosecond laser irradiation of an alkaline lead-oxide silicate glass. MicroRaman spectroscopy and nonlinear fluorescence were employed to probe the local glass network structure and the formation of optically active defects respectively. At low laser pulse energies, the laser modified region is formed by a single light guiding region, whereas for pulses above 14 µJ the modified region is formed by a central dark zone, which does not guide light, accompanied by light guiding zones located in the surrounding of the dark one. This behavior is different from that observed in common silica glass systems but agrees with recent results obtained in phosphate and heavy metal oxide glasses. However, our results show that, unlike the latter glass, local densification of the glass occurs in the whole laser modified region, i.e., in the dark and the guiding zones. The suppression of light guiding in the dark region is explained by a high density of absorbing color centers.This work was partially supported by CICYT (Spain) under Project No. DPI2002-00151. One of the authors (V.D.B.) acknowledges the financial support of the CSIC and the European Social Fund through an I3P Ph.D. fellowship. Another author (P.L.-A. acknowledges funding from the Spanish Government ( the Ramón y Cajal program and Grant No. TIC2003-07485).Peer reviewe

    Cardiovascular Risk in Early Psychosis: Relationship with Inflammation and Clinical Features 6 Months after Diagnosis

    Get PDF
    Background: We aimed to investigate the state of cardiovascular risk/protection factors in early psychosis patients. Methods: A total 119 subjects were recruited during the first year after their first episode of psychosis. Eighty-five of these subjects were followed during the next 6 months. Cardiovascular risk/protection factors were measured in plasma and co-variated by sociodemographic/clinical characteristics. Multiple linear regression models detected the change of each biological marker from baseline to follow-up in relation to clinical scales, antipsychotic medication, and pro-/antiinflammatory mediators. Results: Glycosylated hemoglobin is a state biomarker in first episode of psychosis follow-up patients and inversely correlated to the Global Assessment of Functioning scale. We found opposite alterations in the levels of VCAM-1 and E-selectin in first episode of psychosis baseline conditions compared with control that were absent in the first episode of psychosis follow-up group. Adiponectin levels decreased in a continuum in both pathological time points studied. E-Selectin plasma levels were inversely related to total antipsychotic equivalents and adiponectin levels inversely co-related to the Global Assessment of Functioning scale. Finally, adiponectin levels were directly related to antiinflammatory nuclear receptor PPARy expression in first episode of psychosis baseline conditions and to proinflammatory nuclear factor nuclear factor kB activity in follow-up conditions, respectively. Conclusions: Our results support the need for integrating cardiovascular healthcare very early after the first episode of psychosis

    Pro-/antiinflammatory dysregulation in early psychosis: Results from a 1-year follow-Up study

    Get PDF
    Background: Previous studies indicated a systemic deregulation of the pro-/antiinflammatory balance in subjects after 6 months of a first psychotic episode. This disruption was reexamined 12 months after diagnosis to identify potential risk/ protective factors and associations with symptom severity. Methods: Eighty-five subjects were followed during 12 months and the determination of the same pro-/antiinflammatory mediators was carried out in plasma and peripheral blood mononuclear cells. Multivariate logistic regression analyses were used to identify risk/protective factors. Multiple linear regression models were performed to detect the change of each biological marker during follow-up in relation to clinical characteristics and confounding factors. Results: This study suggests a more severe systemic pro-/antiinflammatory deregulation than in earlier pathological stages in first psychotic episode, because not only were intracellular components of the inflammatory response increased but also the majority of soluble elements. Nitrite plasma levels and cyclooxygenase-2 expression in peripheral blood mononuclear cells are reliable potential risk factors and 15d-prostaglandin-J2 plasma levels a protection biomarker. An interesting relationship exists between antipsychotic dose and the levels of prostaglandin-E2 (inverse) and 15d-prostaglandin-J2 (direct). An inverse relationship between the Global Assessment of Functioning scale and lipid peroxidation is also present. Conclusions: Summing up, pro-/antiinflammatory mediators can be used as risk/protection biomarkers. The inverse association between oxidative/nitrosative damage and the Global Assessment of Functioning scale, and the possibility that one of the targets of antipsychotics could be the restoration of the pro-/antiinflammatory balance support the use of antiinflammatory drugs as coadjuvant to antipsychotics

    Neutrophil count is associated with reduced gray matter and enlarged ventricles in first-episode psychosis

    Get PDF
    Although there is recent evidence that cells from the peripheral immune system can gain access to the central nervous system in certain conditions such as multiple sclerosis, their role has not been assessed in psychosis. Here, we aimed to explore whether blood cell count was associated with brain volume and/or clinical symptomatology. A total of 218 participants (137 first-episode psychosis patients [FEP] and 81 healthy controls [HC]) were included in the study. For each participant, a T1 structural image was acquired, from which brain tissue volumes were calculated. We found that, in FEP, neutrophil count was associated with reduced gray matter (GM) volume (ß = -0.117, P < .001) and increased cerebrospinal fluid volume (ß = 0.191, P = .007). No associations were observed in HC. GM reduction was generalized but more prominent in certain regions, notably the thalamus, the anterior insula, and the left Heschl''s gyrus, among many others. Neutrophil count was also associated with the total PANSS score (ß = 0.173, P = .038), including those items assessing hallucinations (ß = 0.182, P = .028) and avolition (ß = 0.197, P = .018). Several confounders, such as antipsychotic medication, body mass index, and smoking, were controlled for. Overall, the present study may represent the first indirect evidence of brain tissue loss associated with neutrophils in psychosis, and lends support to the hypothesis of a dysregulated immune system. Higher neutrophil count was also associated with more severe clinical symptomatology, which renders it a promising indicator of schizophrenia severity and could even give rise to new therapies

    Cleaved thin-film probes for scanning tunneling microscopy

    Get PDF
    We introduce an alternative type of probe for scanning tunneling microscopy (STM). Instead of using a needle-like tip made from a piece of metallic wire, a sharp-edged cleaved insulating substrate, which is initially covered by a thin conductive film, is used. The sharp tip is formed at the intersection of the two cleaved sides. Using this approach a variety of materials for STM probes can be used, and functionalization of STM probes is possible. The working principle of different probes made of metallic (Pt, Co, and CoB), indium-tin oxide, as well as Cu/Pt and Co/Pt multilayer films are demonstrated by STM imaging of clean Cu(001) and Cu(111) surfaces as well as the epitaxial Co clusters on Cu(111)

    Enhanced field-driven domain wall motion in Pt/Co/Pt and Pt/C068B32/Pt strips

    Get PDF
    It is now commonly accepted that materials exhibiting high perpendicular magnetic anisotropy are excellent candidates for devices based on current-induced domain-wall (DW) motion. A major hindrance of these materials however, is that they exhibit strong DW pinning. Here we report a significant increase in the field-driven DW velocity in Pt(4 nm)/Co68B32(0.6 nm)/Pt(2 nm) layers patterned into 900 nm wide strips. We compare the DW velocity between Co and Co68B32 films and discuss the observed effects using the morphology of the films investigated by high-resolution transmission electron microscopy

    Photonic integrated spot couplers based on vertical mirrors for mode division multiplexing

    No full text
    2-Dimensional top-coupling by employing 45o vertical mirrors based on total internal reflection is proposed. 3-spot and 6-spot InP-based spot couplers using the proposed 45o mirrors as vertical emitters are fabricated and characterized
    corecore