290 research outputs found

    Horizontal stress in planetary lithospheres from vertical processes

    Get PDF
    Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses

    Failure strength of icy lithospheres

    Get PDF
    Lithospheric strengths derived from friction on pre-existing fractures and ductile flow laws show that the tensile strength of intact ice under applicable conditions is actually an order of magnitude stronger than widely assumed. It is demonstrated that this strength is everywhere greater than that required to initiate frictional sliding on pre-existing fractures and faults. Because the tensile strength of intact ice increases markedly with confining pressure, it actually exceeds the frictional strength at all depths. Thus, icy lithospheres will fail by frictional slip along pre-existing fractures at yeild stresses greater than previously assumed rather than opening tensile cracks in intact ice

    Rifting on Venus: Implications for lithospheric structure

    Get PDF
    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation

    Lithospheric structure on Venus from tectonic modelling of compressional features

    Get PDF
    In previous studies, extensional models were used that incorporated realistic rheologies in order to constrain lithospheric structure. Lithospheric modelling is considered herein from the standpoint of compressional deformation. Features of presumed compressional tectonic origin are reviewed and a model for compressional folding based on lithospheric strength envelopes are presented that include the effects of both brittle and ductile yielding as well as finite elastic strength. Model predictions are then compared with the widths and spacings of observed tectonic features and it is concluded that the results are consistent with a thin crust overlying a relatively stronger mantle, with thermal gradients probably in the range of 10 to 15 deg/km

    Strain accommodation beneath structures on Mars

    Get PDF
    A recent review of tectonic features on Mars shows that most of their subsurface structures can be confidently extended only a few kilometers deep (exceptions are rifts, in which bounding normal faults penetrate the entire brittle lithosphere, with ductile flow at deeper levels). Nevertheless, a variety of estimates of elastic lithosphere thickness and application of accepted failure criteria under likely conditions on Mars suggest a brittle lithosphere that is many tens of kilometers thick. This raises the question of how the strain (extension or shortening) accommodated by grabens and wrinkle ridges within the upper few kilometers is being accommodated at deeper levels in the lithosphere. Herein, the nonrift tectonic features present on Mars are briefly reviewed, along with their likely subsurface structures, and some inferences and implications are presented for behavior of the deeper lithosphere

    Does wrinkle ridge formation on Mars involve most of the lithosphere

    Get PDF
    Recent work on the origin of wrinkle ridges suggests that they are compressional tectonic features whose subsurface structure is not understood. Some characteristics of Martian wrinkle ridges are reviewed which suggest that they are the surface expression of thrust faults that extend through much of the lithosphere

    Martian seismicity through time from surface faulting

    Get PDF
    An objective of future Mars missions involves emplacing a seismic network on Mars to determine the internal structure of the planet. An argument based on the relative geologic histories of the terrestrial planets suggests that Mars should be seismically more active than the Moon, but less active than the Earth. The seismicity is estimated which is expected on Mars through time from slip on faults visible on the planets surface. These estimates of martian seismicity must be considered a lower limit as only structures produced by shear faulting visible at the surface today are included (i.e., no provision is made for buried structures or non-shear structures); in addition, the estimate does not include seismic events that do not produce surface displacement (e.g., activity associated with hidden faults, deep lithospheric processes or volcanism) or events produced by tidal triggering or meteorite impacts. Calibration of these estimates suggests that Mars may be many times more seismically active than the Moon

    Importance of expansion and contraction in the formation of tectonic features on the Moon

    Get PDF
    The lack of globally distributed tectonic features on the lunar surface has been used to argue against significant changes in the radius of the Moon since the formation of the presently observed surface, which dates to the end of heavy bombardment about 3.9 Ga. This observation has been used previously to limit the maximum stresses to approximately 100 MPa that could be supported by the lunar lithosphere without the formation of globally distributed tectonic features, which in turn limits the maximum radius changes to plus or minus 1 km for a purely elastic lithosphere. In a previous abstract, limits on the elastic expansion or contraction of the Moon were reexamined with respect to realistic failure stresses necessary to produce actual lunar tectonic features. In addition, limits on the permanent (plastic) strain that could be accommodated by non-mascon grabens and wrinkle ridges were considered with more severe constraints placed on the total reasonable expansion and contraction of the Moon since 3.9 Ga. In this abstract, considerations of the distribution and mechanisms of formation due to a planetary radius change or their accommodating much permanent plastic planetary expansion or contraction

    Lunette: A Two-Lander Discovery-Class Geophysics Mission to the Moon

    Get PDF
    The document “The Scientific Context for the Exploration of the Moon” [1] designated understanding the structure and composition of the lunar interior (to provide fundamental information on the evolution of a differentiated planetary body) as the second highest priority lunar science concept that needed to be addressed. To this end, the Science Mission Directorate formulated the International Lunar Network (ILN) mission concept (web site) that enlisted international partners to enable the establishment of a geophysical network on the lunar surface. NASA would establish the first four “anchor nodes” in the 2018 time frame. These nodes are envisioned to use radioisotope power systems to allow operation of each node for at least 6 years. Each anchor node will contain a seismometer, magnetometer, laser retroreflector, and a heat flow probe [2] and will be distributed across the lunar surface to form a much more widespread network that the Apollo passive seismic, magnetometer, heat flow, and the Apollo and Luna laser retroreflector networks. (Fig. 1). It is planned that the four anchor nodes will be launched on an Atlas 5 launch vehicle and the cost is estimated to exceed that for a New Frontiers mission. What we present here is an alternative to the ILN architecture that will still return the data required to understand the nature of the lunar interior and determine how the Moon evolved

    Geophysical models of Western Aphrodite-Niobe region: Venus

    Get PDF
    The new topography and gravitational field data for Venus expressed in spherical harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief and stress state of the Venusian lithosphere. In these models, we consider models in which convection is confined beneath a thick, buoyant lithosphere. We divide the convection regime into an upper mantle and lower mantle component. The lateral scales are smaller than on Earth. In these models, relative to Earth, convection is reflected in higher order terms of the gravitational field. On Venus geoid height and topography are highly correlated, although the topography appears to be largely compensated. We hypothesize that Venus topography for those wavelengths that correlate well with the geoid is partly compensated at the crust-mantle boundary, while for the others compensation may be distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters of the models of the external layers of Venus together with geological mapping allows us to begin investigations of the tectonics and geodynamics of the planet. For stress calculations we use a new technique of space- and time-dependent Green's response functions using Venus models with rheologically stratified lithosphere and mantle and a ductile lower crust. In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm(exp -3). The thickness of a weak mantle zone may be from 350 to 1000 km. Strong sensitivity of calculated stress to various parameters of the layered model of Venus together with geological mapping and analysis of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the planet. The results are presented in the form of maps of compression-extension and maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which can be presented as a function of time. We have modeled the region of Western Aphrodite and the Niobe plains to get reasonable depths of compensation. Crust mantle boundary relief is calculated for Western Aphrodite-Niobe relative to a mean crustal thickness of 50 km. The calculations include the consequences of simple crust models and more complicated models with a weak, ductile lower crust, a strong upper mantle and a weak lower mantle layer
    corecore