86 research outputs found

    An Elusive Z' Coupled to Beauty

    Full text link
    By extending the standard gauge group to SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X with X charges carried only by the third family we accommodate the LEP measurement of R_b and predict a potentially measurable discrepancy in A_{FB}^{b} in e^+e^- scattering and that D^0\bar{D}^0 mixing may be near its experimental limit. The Z', which explicitly violates the GIM mechanism, can nevertheless be naturally consistent with FCNC constraints. Direct detection of the Z' is possible but challenging.Comment: 12 pages, plus 1 Postscript figure, uses revtex, Discussion of FCNC extende

    R_b and New Physics: A Comprehensive Analysis

    Get PDF
    We survey the implications for new physics of the discrepancy between the LEP measurement of RbR_b and its Standard Model prediction. Two broad classes of models are considered: (ii) those in which new Z\bbar b couplings arise at tree level, through ZZ or bb-quark mixing with new particles, and (iiii) those in which new scalars and fermions alter the Z \bbar b vertex at one loop. We keep our analysis as general as possible in order to systematically determine what kinds of features can produce corrections to RbR_b of the right sign and magnitude. We are able to identify several successful mechanisms, which include most of those which have been recently been proposed in the literature, as well as some earlier proposals (\eg\ supersymmetric models). By seeing how such models appear as special cases of our general treatment we are able to shed light on the reason for, and the robustness of, their ability to explain RbR_b.Comment: 60 pages, 8 figures, plain tex, uses epsf. Final version to appear in Phys. Rev. D; propgating sign error corrected in eqs. 78, 87, 88, 89, 98, and 107; results unchange

    Resonant origin for density fluctuations deep within the Sun: helioseismology and magneto-gravity waves

    Get PDF
    We analyze helioseismic waves near the solar equator in the presence of magnetic fields deep within the solar radiative zone. We find that reasonable magnetic fields can significantly alter the shapes of the wave profiles for helioseismic g-modes. They can do so because the existence of density gradients allows g-modes to resonantly excite Alfven waves, causing mode energy to be funnelled along magnetic field lines, away from the solar equatorial plane. The resulting wave forms show comparatively sharp spikes in the density profile at radii where these resonances take place. We estimate how big these waves might be in the Sun, and perform a first search for observable consequences. We find the density excursions at the resonances to be too narrow to be ruled out by present-day analyses of p-wave helioseismic spectra, even if their amplitudes were to be larger than a few percent. (In contrast it has been shown in (Burgess et al. 2002) that such density excursions could affect solar neutrino fluxes in an important way.) Because solar p-waves are not strongly influenced by radiative-zone magnetic fields, standard analyses of helioseismic data should not be significantly altered. The influence of the magnetic field on the g-mode frequency spectrum could be used to probe sufficiently large radiative-zone magnetic fields should solar g-modes ever be definitively observed. Our results would have stronger implications if overstable solar g-modes should prove to have very large amplitudes, as has sometimes been argued.Comment: 18 pages, 6 figures; misprints correcte

    Signature for heavy Majorana neutrinos in hadronic collisions

    Get PDF
    The production and decay of new possible heavy Majorana neutrinos are analyzed in hadronic collisions. New bounds on the mixing of these particles with standard neutrinos are estimated according to a fundamental representation suggested by grand unified models. A clear signature for these Majorana neutrinos is given by same-sign dileptons plus a charged weak vector boson in the final state. We discuss the experimental possibilities for the future Large Hadron Collider (LHC) at CERN.Comment: Latex2e(epsfig), 12 pages, 8 figures, to appear Physical Review

    MeV neutrinos in double beta decay

    Get PDF
    The effect of Majorana neutrinos in the MeV mass range on the double beta decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half life data, limits on the mixing parameter Ueh2U_{eh}^2 of the order 107^{-7} can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure

    Leptophobic U(1)'s and the R_b - R_c Crisis

    Get PDF
    In this paper, we investigate the possibility of explaining both the R_b excess and the R_c deficit reported by the LEP experiments through Z-Z' mixing effects. We have constructed a set of models consistent with a restrictive set of principles: unification of the Standard Model (SM) gauge couplings, vector- like additional matter, and couplings which are both generation-independent and leptophobic. These models are anomaly-free, perturbative up to the GUT scale, and contain realistic mass spectra. Out of this class of models, we find three explicit realizations which fit the LEP data to a far better extent than the unmodified SM or MSSM and satisfy all other phenomenological constraints which we have investigated. One realization, the \eta-model coming from E_6, is particularly attractive, arising naturally from geometrical compactifications of heterotic string theory. This conclusion depends crucially on the inclusion of a U(1) kinetic mixing term, whose value is correctly predicted by renormalization group running in the E_6 model given one discrete choice of spectra.Comment: LaTeX, 26 pages, 5 embedded EPSF figures. Version to be published in Phys. Rev.

    Discovering a Light Higgs Boson with Light

    Get PDF
    We evaluate the prospects for detecting a non-standard light Higgs boson with a significant branching ratio to two photons, in Run II of the Fermilab Tevatron. We derive the reach for several channels: 2γ2\gamma inclusive, 2γ+12\gamma+1 jet and 2γ+22\gamma+2 jets. We present the expected Run II limits on the branching ratio of hγγh\to\gamma\gamma as a function of the Higgs mass, for the case of ``bosonic'', as well as ``topcolor'' Higgs bosons.Comment: 11 pages, LaTeX, 7 figures, 4 tables, uses aipproc2.sty, contributed to the Physics at Run II Workshop, analysis redone with optimized cuts and improved background estimate, references adde

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature.

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment

    Supernova Bounds on Majoron-emitting decays of light neutrinos

    Get PDF
    Neutrino masses arising from the spontaneous violation of ungauged lepton-number are accompanied by a physical Goldstone boson, generically called Majoron. In the high-density supernova medium the effects of Majoron-emitting neutrino decays are important even if they are suppressed in vacuo by small neutrino masses and/or small off-diagonal couplings. We reconsider the influence of these decays on the neutrino signal of supernovae in the light of recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim 2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury Neutrino Observatory to detect majoron neutrino interactions in the case of a future galactic supernova. We find that these experiments could probe majoron neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure
    corecore