54 research outputs found

    A Generalized Framework for Quantifying the Dynamics of EEG Event-Related Desynchronization

    Get PDF
    Brains were built by evolution to react swiftly to environmental challenges. Thus, sensory stimuli must be processed ad hoc, i.e., independent—to a large extent—from the momentary brain state incidentally prevailing during stimulus occurrence. Accordingly, computational neuroscience strives to model the robust processing of stimuli in the presence of dynamical cortical states. A pivotal feature of ongoing brain activity is the regional predominance of EEG eigenrhythms, such as the occipital alpha or the pericentral mu rhythm, both peaking spectrally at 10 Hz. Here, we establish a novel generalized concept to measure event-related desynchronization (ERD), which allows one to model neural oscillatory dynamics also in the presence of dynamical cortical states. Specifically, we demonstrate that a somatosensory stimulus causes a stereotypic sequence of first an ERD and then an ensuing amplitude overshoot (event-related synchronization), which at a dynamical cortical state becomes evident only if the natural relaxation dynamics of unperturbed EEG rhythms is utilized as reference dynamics. Moreover, this computational approach also encompasses the more general notion of a “conditional ERD,” through which candidate explanatory variables can be scrutinized with regard to their possible impact on a particular oscillatory dynamics under study. Thus, the generalized ERD represents a powerful novel analysis tool for extending our understanding of inter-trial variability of evoked responses and therefore the robust processing of environmental stimuli

    Governing the Global Land Grab: Multipolarity, Ideas and Complexity in Transnational Governance

    Get PDF
    Since 2008, a series of new regulatory initiatives have emerged to address large-scale land grabs. These initiatives are occurring simultaneously at multiple levels of social organization instead of a single, overarching institutional site. A significant portion of this activity is taking place at the transnational level. We suggest that transnational land governance is indicative of emerging shifts in the practice of governance of global affairs. We analyze such shifts by asking two related questions: what does land grabbing tell us about developments in transnational governance, particularly with regard to North-South relations, and what do these developments in transnational governance mean for regulating land grabbing?Desde 2008, ha surgido una serie de nuevas iniciativas regulatorias para tratar acaparamientos de tierra a gran escala. Estas iniciativas están sucediendo simultáneamente a niveles múltiples de la organización social en vez de un lugar institucional predominante. Una porción importante de esta actividad está tomando lugar al nivel transnacional. Sugerimos que la gobernanza de tierras trasnacionales es indicativa de los cambios que están surgiendo en la práctica de gobernanza de los asuntos globales. Analizamos tales cambios haciendo dos preguntas relacionadas: ¿qué nos dice el acaparamiento de tierras sobre los desarrollos en la gobernanza trasnacional, particularmente con las relaciones norte-sur?, y ¿qué significan estos desarrollos en gobernanza trasnacional para regular el acaparamiento de tierras

    Mass Transfer between Phases Role of Eddy Diffusion

    No full text

    Retinal alterations in patients with Lafora disease

    Get PDF
    Purpose: Lafora disease is a genetic neurodegenerative metabolic disorder caused by insoluble polyglucosan aggregate accumulation throughout the central nervous system and body. The retina is an accessible neural tissue, which may offer alternative methods to assess neurological diseases quickly and noninvasively. In this way, noninvasive imaging may provide a means to characterize neurodegenerative disease, which enables earlier identification and diagnosis of disease and the ability to monitor disease progression. In this study, we sought to characterize the retina of individuals with Lafora disease using non-invasive retinal imaging. Methods: One eye of three individuals with genetically confirmed Lafora disease were imaged with optical coherence tomography (OCT) and adaptive optics scanning light ophthalmoscopy (AOSLO). When possible, OCT volume and line scans were acquired to assess total retinal thickness, ganglion cell-inner plexiform layer thickness, and outer nuclear layer + Henle fiber layer thickness. OCT angiography (OCTA) scans were acquired in one subject at the macula and optic nerve head (ONH). AOSLO was used to characterize the photoreceptor mosaic and examine the retinal nerve fiber layer (RNFL). Results: Two subjects with previous seizure activity demonstrated reduced retinal thickness, while one subject with no apparent symptoms had normal retinal thickness. All other clinical measures, as well as parafoveal cone density, were within normal range. Nummular reflectivity at the level of the RNFL was observed using AOSLO in the macula and near the ONH in all three subjects. Conclusions: This multimodal retinal imaging approach allowed us to observe a number of retinal structural features in all three individuals. Most notably, AOSLO revealed nummular reflectivity within the inner retina of each subject. This phenotype has not been reported previously and may represent a characteristic change produced by the neurodegenerative process
    • …
    corecore