1,090 research outputs found

    Counting real rational functions with all real critical values

    Full text link
    We study the number of real rational degree n functions (considered up to linear fractional transformations of the independent variable) with a given set of 2n-2 distinct real critical values. We present a combinatorial reformulation of this number and pose several related questions.Comment: 12 pages (AMSTEX), 3 picture

    Loop-Less Electric Dipole Moment of the Nucleon in the Standard Model

    Full text link
    We point out that the electric dipole moment of the neutron in the Standard Model is generated already at tree level to the second order in the weak interactions due to bound-state effects, without short-distance Penguin loops. The related contribution has a regular nonvanishing chiral limit and does not depend on the mass splitting between s and d quarks. We estimate it to be roughly 10^(-31)e*cm and expect a more accurate evaluation in the future. We comment on the connection between d_n and the direct CP-violation in D decays.Comment: 10 pages, 2 figure

    Exact Results in Gauge Theories: Putting Supersymmetry to Work. The 1999 Sakurai Prize Lecture

    Full text link
    Powerful methods based on supersymmetry allow one to find exact solutions to certain problems in strong coupling gauge theories. The inception of some of these methods (holomorphy in the gauge coupling and other chiral parameters, in conjunction with instanton calculations) dates back to the 1980's. I describe the early exact results -- the calculation of the beta function and the gluino condensate -- and their impact on the subsequent developments. A brief discussion of the recent breakthrough discoveries where these results play a role is given.Comment: Based on the talk at the Centennial Meeting of The American Physical Society, March 20-26, Atlanta, GA. LaTex (uses sprocl.sty), 36 pages, 5 eps figures include

    Scalar Quarkonia at Finite Temperature

    Get PDF
    Masses and decay constants of the scalar quarkonia, χQ0(Q=b,c)\chi_{Q0} (Q=b,c) with quantum numbers IG(JPC)=0+(0++)I^G(J^{PC})=0^{+}(0^{++}) are calculated in the framework of the QCD sum rules approach both in vacuum and finite temperature. The masses and decay constants remain unchanged up to T≃100 MeVT\simeq100~MeV but they start to diminish with increasing the temperature after this point. At near the critic or deconfinement temperature, the decay constants reach approximately to 25% of their values in vacuum, while the masses are decreased about 6% and 23% for bottom and charm cases, respectively. The results at zero temperature are in a good consistency with the existing experimental values and predictions of the other nonperturbative approaches. Our predictions on the decay constants in vacuum as well as the behavior of the masses and decay constants with respect to the temperature can be checked in the future experiments.Comment: 12 Pages, 9 Figures and 2 Table
    • …
    corecore