3 research outputs found
A multimedia access control language for virtual and ambient intelligence environments
Access control models are becoming increasingly important in several application domains especially in distributed environments like those addressed by Web Services. Established approaches such as DAC [16] , MAC [16] RBAC [11, 12, 22] and others [6, 5, 15, 1] suggest representing users in different ways (labels, roles, credentials, etc.) in order to facilitate the association of authorization and access control policies. In intelligent and virtual ambient applications, users exist in a controlled environment equipped with multimedia sensors such as cameras and microphones, and use their terminals in several application environments. In this paper, we study the problem of integrating multimedia objects into access control models and particularly role-based ones. Here, we describe a Multimedia Access Control Language (M 2ACL) in which users and roles are described by using sets of mul- timedia objects,greatly increasing the flexibility of access control policies and their applicability to virtual and ambient intelligence (AmI) environments. We address potential risks related to the use of multimedia objects by defining the concept of filter functions used to aggregate a set of values into a relevant one.Finally,we present a set of functional specification and the experiments conducted to validate the proposed approach
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
A user-centric mechanism for sequentially releasing graph datasets under blowfish privacy
Abstract
In this article, we present a privacy-preserving technique for user-centric multi-release graphs. Our technique consists of sequentially releasing anonymized versions of these graphs under Blowfish Privacy. To do so, we introduce a graph model that is augmented with a time dimension and sampled at discrete time steps. We show that the direct application of state-of-the-art privacy-preserving Differential Private techniques is weak against background knowledge attacker models. We present different scenarios where randomizing separate releases independently is vulnerable to correlation attacks. Our method is inspired by Differential Privacy (DP) and its extension Blowfish Privacy (BP). To validate it, we show its effectiveness as well as its utility by experimental simulations