108 research outputs found

    Concurrent trastuzumab with adjuvant radiotherapy in HER2-positive breast cancer patients: acute toxicity analyses from the French multicentric study

    Get PDF
    Background: Trastuzumab (T) combined with chemotherapy has been recently shown to improve outcome in HER2-positive breast cancer (BC). The aim of this study was to evaluate the toxic effects of concurrent radiation therapy (RT) and T administration in the adjuvant setting. Patients and methods: Data of 146 patients with stages II-III HER2-positive BC were recorded. Median age was 46 years. In all, 32 (23%) and 114 (77%) patients received a weekly and a 3-week T schedule, respectively. A median dose of 50 Gy was delivered after surgery. Internal mammary chain (IMC) was irradiated in 103 (71%) patients. Results: Grade >2 dermatitis and esophagitis were noted in 51% and 12%, respectively. According to the Common Toxicity Criteria v3.0 scale and HERA (HERceptin Adjuvant) trial criteria, respectively, 10% and 6% of the patients had a grade ≥2 of left ventricular ejection fraction (LVEF) decrease after RT. Multivariate analyses revealed two independent prognostic factors: weekly T administration (for LVEF decrease) and menopausal status (for dermatitis). Higher level of T cumulative dose (>1600 mg) was only borderline of statistical significance for acute esophagitis toxicity. Conclusion: We showed that weekly concurrent T and RT are feasible in daily clinical practice with, however, a decrease of LVEF. Cardiac volume sparing and patient selections for IMC irradiation are highly recommended. Longer follow-up is warranted to evaluate late toxic effect

    Modal analysis of a scale model of QD0

    Get PDF
    The last focusing magnets of the future Compact Linear Collider (CLIC) are critical elements needed to reach the desired luminosity. Designed to guide the nanometer sized focused beams, they need to be as stiff as possible to avoid any unwanted ground motion vibration amplification. Following our recent study concerning CLIC's ground motion mitigation techniques such as the active seismic isolator, the next step is to build a real scale prototype of the QD0. This mock-up is needed to validate experimentally the proposed control strategy. Such a prototype isn't yet available, hence this first study with a scale model of QD0. In this paper, modal analysis is used to analyze the dynamic characteristics of the structure of the prototype. This analysis identifies mode shapes, frequency and damping parameters. The purpose of this paper is to provide model verification by comparing experimental and theoretical modal analysis. The knowledge of these modes would later allow to validate experimentally ground motion vibration damping on that scale model of QD0, and finally on the real scale mock-up of QD0 by predicting the effect of design change

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE\u27s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP=±π/2. Additionally, the dependence of DUNE\u27s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Concurrent trastuzumab with adjuvant radiotherapy in HER2-positive breast cancer patients: acute toxicity analyses from the French multicentric study

    Get PDF
    BACKGROUND: Trastuzumab (T) combined with chemotherapy has been recently shown to improve outcome in HER2-positive breast cancer (BC). The aim of this study was to evaluate the toxic effects of concurrent radiation therapy (RT) and T administration in the adjuvant setting. PATIENTS AND METHODS: Data of 146 patients with stages II-III HER2-positive BC were recorded. Median age was 46 years. In all, 32 (23%) and 114 (77%) patients received a weekly and a 3-week T schedule, respectively. A median dose of 50 Gy was delivered after surgery. Internal mammary chain (IMC) was irradiated in 103 (71%) patients. RESULTS: Grade >2 dermatitis and esophagitis were noted in 51% and 12%, respectively. According to the Common Toxicity Criteria v3.0 scale and HERA (HERceptin Adjuvant) trial criteria, respectively, 10% and 6% of the patients had a grade >/=2 of left ventricular ejection fraction (LVEF) decrease after RT. Multivariate analyses revealed two independent prognostic factors: weekly T administration (for LVEF decrease) and menopausal status (for dermatitis). Higher level of T cumulative dose (>1600 mg) was only borderline of statistical significance for acute esophagitis toxicity. CONCLUSION: We showed that weekly concurrent T and RT are feasible in daily clinical practice with, however, a decrease of LVEF. Cardiac volume sparing and patient selections for IMC irradiation are highly recommended. Longer follow-up is warranted to evaluate late toxic effects

    MRI assessment of the effects of acetazolamide and external lumbar drainage in idiopathic Normal Pressure Hydrocephalus

    Get PDF
    BACKGROUND: The objective was to identify changes in quantitative MRI measures in patients with idiopathic normal pressure hydrocephalus (iNPH) occurring in common after oral acetazolamide (ACZ) and external lumbar drainage (ELD) interventions. METHODS: A total of 25 iNPH patients from two clinical sites underwent serial MRIs and clinical assessments. Eight received ACZ (125-375 mg/day) over 3 months and 12 underwent ELD for up to 72 hours. Five clinically-stable iNPH patients who were scanned serially without interventions served as controls for the MRI component of the study. Subjects were divided into responders and non-responders to the intervention based on gait and cognition assessments made by clinicians blinded to MRI results. The MRI modalities analyzed included T1-weighted images, diffusion tensor Imaging (DTI) and arterial spin labelling (ASL) perfusion studies. Automated threshold techniques were used to define regions of T1 hypo-intensities. RESULTS: Decreased volume of T1-hypointensities and decreased mean diffusivity (MD) within remaining hypointensities was observed after ACZ and ELD but not in controls. Patients responding positively to these interventions had more extensive decreases in T1-hypointensites than non-responders: ACZ-responders (4,651 ± 2,909 mm(3)), ELD responders (2,338 ± 1,140 mm(3)), ELD non-responders (44 ± 1,188 mm(3)). Changes in DTI MD within T1-hypointensities were greater in ACZ-responders (7.9% ± 2%) and ELD-responders (8.2% ± 3.1%) compared to ELD non-responders (2.1% ± 3%). All the acetazolamide-responders showed increases in whole-brain-average cerebral blood flow (wbCBF) estimated by ASL (18.8% ± 8.7%). The only observed decrease in wbCBF (9.6%) occurred in an acetazolamide-non-responder. A possible association between cerebral atrophy and response was observed, with subjects having the least cortical atrophy (as indicated by a positive z-score on cortical thickness measurements) showing greater clinical improvement after ACZ and ELD. CONCLUSIONS: T1-hypointensity volume and DTI MD measures decreased in the brains of iNPH patients following oral ACZ and ELD. The magnitude of the decrease was greater in treatment responders than non-responders. Despite having different mechanisms of action, both ELD and ACZ may decrease interstitial brain water and increase cerebral blood flow in patients with iNPH. Quantitative MRI measurements appear useful for objectively monitoring response to acetazolamide, ELD and potentially other therapeutic interventions in patients with iNPH

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    Get PDF
    The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 ± 0.6 % and 84.1 ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Get PDF
    Measurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
    corecore