48 research outputs found

    Prediction of first test day milk yield using historical records in dairy cows

    Get PDF
    The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool

    Sensor-based behavioral patterns can identify heat-sensitive lactating dairy cows

    No full text
    Heat stress impairs the health and performance of dairy cows, yet only a few studies have investigated the diversity of cattle behavioral responses to heat waves. This research was conducted on an Italian Holstein dairy farm equipped with precision livestock farming sensors to assess potential different behavioral patterns of the animals. Three heat waves, defined as at least five consecutive days with mean daily temperature-humidity index higher than 72, were recorded in the farm area during the summer of 2021. Individual daily milk yield data of 102 cows were used to identify "heat-sensitive" animals, meaning the cows that, under a given heat wave, experienced a milk yield drop that was not linked with other health events (e.g., mastitis). Milk yield drops were detected as perturbations of the lactation curve estimated by iteratively using Wood's equation. Individual daily minutes of lying, chewing, and activity were retrieved from ear-tag-based accelerometer sensors. Semi-parametric generalized estimating equations models were used to assess behavioral deviations of heat-sensitive cows from the herd means under heat stress conditions. Heat waves were associated with an overall increase in the herd's chewing and activity times, along with an overall decrease of lying time. Heat-sensitive cows spent approximately 15 min/days more chewing and performing activities (p < 0.05). The findings of this research suggest that the information provided by high-frequency sensor data could assist farmers in identifying cows for which personalized interventions to alleviate heat stress are needed

    Productive life span and resilience rank can be predicted from on-farm first-parity sensor time series but not using a common equation across farms

    No full text
    A dairy cow's lifetime resilience and her ability to recalve gain importance on dairy farms, as they affect all aspects of the sustainability of the dairy industry. Many modern farms today have milk meters and activity sensors that accurately measure yield and activity at a high frequency for monitoring purposes. We hypothesized that these same sensors can be used for precision phenotyping of complex traits such as lifetime resilience or productive life span. The objective of this study was to investigate whether lifetime resilience and productive life span of dairy cows can be predicted using sensor-derived proxies of first-parity sensor data. We used a data set from 27 Belgian and British dairy farms with an automated milking system containing at least 5 yr of successive measurements. All of these farms had milk meter data available, and 13 of these farms were also equipped with activity sensors. This subset was used to investigate the added value of activity meters to improve the model's prediction accuracy. To rank cows for lifetime resilience, a score was attributed to each cow based on her number of calvings, her 305-d milk yield, her age at first calving, her calving intervals, and the DIM at the moment of culling, taking her entire lifetime into account. Next, this lifetime resilience score was used to rank the cows within their herd, resulting in a lifetime resilience ranking. Based on this ranking, cows were classified in a low (last third), moderate (middle third), or high (first third) resilience category within farm. In total, 45 biologically sound sensor features were defined from the time series data, including measures of variability, lactation curve shape, milk yield perturbations, activity spikes indicating estrous events, and activity dynamics representing health events (e.g., drops in daily activity). These features, calculated on first-lactation data, were used to predict the lifetime resilience rank and, thus, to predict the classification within the herd (low, moderate, or high). Using a specific linear regression model progressively including features stepwise selected at farm level (cutoff P-value of 0.2), classification performances were between 35.9 and 70.0% (46.7 ± 8.0, mean ± SD) for milk yield features only, and between 46.7 and 84.0% (55.5 ± 12.1, mean ± SD) for lactation and activity features together. This is, respectively, 13.7 and 22.2% higher than what random classification would give. Moreover, using these individual farm models, only 3.5 and 2.3% of cows were classified high when they were actually low, or vice versa, whereas respectively 91.8 and 94.1% of wrongly classified animals were predicted in an adjacent category. The sensor features retained in the prediction equation of the individual farms differed across farms, which demonstrates the variability in culling and management strategies across farms and within farms over time. This lack of a common model structure across farms suggests the need to consider local (and evidence-based) culling management rules when developing decision support tools for dairy farms. With this study we showed the potential of precision phenotyping of complex traits based on biologically meaningful features derived from readily available sensor data. We conclude that first-lactation milk and activity sensor data have the potential to predict cows' lifetime resilience rankings within farms but that consistency between farms is currently lacking

    Prediction of first test day milk yield using historical records in dairy cows

    Get PDF
    The transition between two lactations remains one of the most critical periods during the productive life of dairy cows. In this study, we aimed to develop a model that predicts the milk yield of dairy cows from test day milk yield data collected in the previous lactation. In the past, data routinely collected in the context of herd improvement programmes on dairy farms have been used to provide insights in the health status of animals or for genetic evaluations. Typically, only data from the current lactation is used, comparing expected (i.e., unperturbed) with realised milk yields. This approach cannot be used to monitor the transition period due to the lack of unperturbed milk yields at the start of a lactation. For multiparous cows, an opportunity lies in the use of data from the previous lactation to predict the expected production of the next one. We developed a methodology to predict the first test day milk yield after calving using information from the previous lactation. To this end, three random forest models (nextMILKFULL, nextMILKPH, and nextMILKP) were trained with three different feature sets to forecast the milk yield on the first test day of the next lactation. To evaluate the added value of using a machine-learning approach against simple models based on contemporary animals or production in the previous lactation, we compared the nextMILK models with four benchmark models. The nextMILK models had an RMSE ranging from 6.08 to 6.24 kg of milk. In conclusion, the nextMILK models had a better prediction performance compared to the benchmark models. Application-wise, the proposed methodology could be part of a monitoring tool tailored towards the transition period. Future research should focus on validation of the developed methodology within such tool
    corecore