252 research outputs found

    Guiding-center solitons in rotating potentials

    Full text link
    We demonstrate that rotating quasi-one-dimensional potentials, periodic or parabolic, support solitons in settings where they are otherwise impossible. Ground-state and vortex solitons are found in defocusing media, if the rotation frequency exceeds a critical value. The revolving periodic potentials exhibit the strongest stabilization capacity at a finite optimum value of their strength, while the rotating parabolic trap features a very sharp transition to stability with the increase of rotation frequency.Comment: 16 pages, 6 figures, to appear in Physical Review

    Bright solitons from defocusing nonlinearities

    Full text link
    We report that defocusing cubic media with spatially inhomogeneous nonlinearity, whose strength increases rapidly enough toward the periphery, can support stable bright localized modes. Such nonlinearity landscapes give rise to a variety of stable solitons in all three dimensions, including 1D fundamental and multihump states, 2D vortex solitons with arbitrarily high topological charges, and fundamental solitons in 3D. Solitons maintain their coherence in the state of motion, oscillating in the nonlinear potential as robust quasi-particles and colliding elastically. In addition to numerically found soliton families, particular solutions are found in an exact analytical form, and accurate approximations are developed for the entire families, including moving solitons.Comment: 13 pages, 6 figures, to appear in Physical Review

    Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media

    Full text link
    We demonstrate the existence of stable three-dimensional spatiotemporal solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental (nonspinning) STSs forming one-parameter families are stable if their propagation constant exceeds a certain critical value, that is inversely proportional to the range of nonlocality of nonlinear response. All spinning three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication

    Stable spatiotemporal solitons in Bessel optical lattices

    Full text link
    We investigate the existence and stability of three-dimensional (3D) solitons supported by cylindrical Bessel lattices (BLs) in self-focusing media. If the lattice strength exceeds a threshold value, we show numerically, and using the variational approximation, that the solitons are stable within one or two intervals of values of their norm. In the latter case, the Hamiltonian-vs.-norm diagram has a "swallowtail" shape, with three cuspidal points. The model applies to Bose-Einstein condensates (BECs) and to optical media with saturable nonlinearity, suggesting new ways of making stable 3D BEC solitons and "light bullets" of an arbitrary size.Comment: 9 pages, 4 figures, Phys. Rev. Lett., in pres

    Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity

    Get PDF
    Toroidal modes in the form of so-called Hopfions, with two independent winding numbers, a hidden one (twist, s), which characterizes a circular vortex thread embedded into a three-dimensional soliton, and the vorticity around the vertical axis m, appear in many fields, including the field theory, ferromagnetics, and semi- and superconductors. Such topological states are normally generated in multi-component systems, or as trapped quasi-linear modes in toroidal potentials. We uncover that stable solitons with this structure can be created, without any linear potential, in the single-component setting with the strength of repulsive nonlinearity growing fast enough from the center to the periphery, for both steep and smooth modulation profiles. Toroidal modes with s=1 and vorticity m=0,1,2 are produced. They are stable for m<=1, and do not exist for s>1. An approximate analytical solution is obtained for the twisted ring with s=1, m=0. Under the application of an external torque, it rotates like a solid ring. The setting can be implemented in BEC, by means of the Feshbach resonance controlled by inhomogene-ous magnetic fields.Comment: 12 pages, 5 figures, to appear in Physical Review Letter

    Stable two-dimensional soliton complexes in Bose-Einstein condensates with helicoidal spin-orbit coupling

    Get PDF
    We show that attractive two-dimensional spinor Bose-Einstein condensates with helicoidal spatially periodic spin-orbit coupling (SOC) support a rich variety of stable fundamental solitons and bound soliton complexes. Such states exist with chemical potentials belonging to the semi-infinite gap in the band spectrum created by the periodically modulated SOC. All these states exist above a certain threshold value of the norm. The chemical potential of fundamental solitons attains the bottom of the lowest band, whose locus is a ring in the space of Bloch momenta, and the radius of the ring is a non-monotonous function of the SOC strength. The chemical potential of soliton complexes does not attain the band edge. The complexes are bound states of several out-of-phase fundamental solitons whose centers are placed at local maxima of the SOC-modulation phase. In this sense, the impact of the helicoidal SOC landscape on the solitons is similar to that of a periodic two-dimensional potential. In particular, it can compensate repulsive forces between out-of-phase solitons, making their bound states stable. Extended stability domains are found for complexes built of two and four solitons (dipoles and quadrupoles, respectively). They are typically stable below a critical value of the chemical potential.Comment: minor corrections, published version, 2020 New J. Phys. 22 10301

    Double symmetry breaking of solitons in one-dimensional virtual photonic crystals

    Full text link
    We demonstrate that spatial solitons undergo two consecutive spontaneous symmetry breakings (SSBs), with the increase of the total power, in nonlinear photonic crystals (PhCs) built as arrays of alternating linear and nonlinear stripes, in the case when maxima of the effective refractive index coincide with minima of the self-focusing coefficient, and vice versa, i.e.,the corresponding linear and nonlinear periodic potentials are in competition. This setting may be induced, as a virtual PhC, by means of the EIT (electromagnetically-induced-transparency) technique, in a uniform optical medium. It may also be realized as a Bose-Einstein condensate (BEC) subject to the action of combined periodic optical potential and periodically modulated Feshbach resonance. The first SSB happens at the center of a linear stripe, pushing a broad low-power soliton into an adjacent nonlinear stripe and gradually suppressing side peaks in the soliton's shape. Then, the soliton restores its symmetry, being pinned to the midpoint of the nonlinear stripe. The second SSB occurs at higher powers, pushing the narrow soliton off the center of the nonlinear channel,while the soliton keeps its internal symmetry. The results are obtained by means of numerical and analytical methods. They may be employed to control switching of light beams by means of the varying power.Comment: 8 pages, 5 figures, Phys. Rev. A, in pres

    Nonlinear Scattering of a Bose-Einstein Condensate on a Rectangular Barrier

    Full text link
    We consider the nonlinear scattering and transmission of an atom laser, or Bose-Einstein condensate (BEC) on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several new physical features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark soliton or dark soliton train from a phonon-like standing wave.Comment: 15 pages, 15 figures, new version includes clarification of definition of transmission coefficient in general nonlinear vs. linear cas

    Asymmetric Wave Propagation Through Nonlinear PT-symmetric Oligomers

    Full text link
    In the present paper, we consider nonlinear PT-symmetric dimers and trimers (more generally, oligomers) embedded within a linear Schr{\"o}dinger lattice. We examine the stationary states of such chains in the form of plane waves, and analytically compute their reflection and transmission coefficients through the nonlinear PT symmetric oligomer, as well as the corresponding rectification factors which clearly illustrate the asymmetry between left and right propagation in such systems. We examine not only the existence but also the dynamical stability of the plane wave states and interestingly find them to be generically unstable. Lastly, we generalize our numerical considerations to the more physically relevant case of Gaussian initial wavepackets and confirm that the asymmetry in the transmission properties persists in the case of such wavepackets, as well

    Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials

    Full text link
    We construct families of ordinary and gap solitons (GSs), including solitary vortices, in the two-dimensional (2D) system based on the nonlinear-Schr\"Aodinger/Gross-Pitaevskii equation with the 2D or quasi-1D (Q1D) periodic linear potential, combined with the periodic modulation of the cubic nonlinearity (also in the 2D or Q1D form), which is, generally, incommensurate with the linear potential, thus forming a \nonlinear quasicrystal". Stable vortices are built as complexes of four peaks with the separation between them equal to the double period of the linear potential. The system may be realized in photonic crystals or Bose-Einstein condensates (BECs). The variational approximation (VA) is applied to ordinary solitons (residing in the semi-infinite gap), and numerical methods are used to construct solitons of all the types. Stability regions are identified for soliton families in all the versions of the model.Comment: 8 pages, 11 figures. Accepted for a Special issue on Photonics of Physica Script
    • …
    corecore