342 research outputs found

    Professor V.N. Shubin - a doctor, scientist, teacher. 120th birth anniversary

    Get PDF
    In the article devoted to the 120th birth anniversary of Professor V.N. Shubin, his life path from a student of the medical department to the head of the Department of General surgery of Kazan medical institute is presented. Vladimir Nikolaevich Shubin was awarded the order of Lenin, ten medals, the “excellent worker of public health of RSFSR” badge, certificates of honor. He is the author of over 100 scientific papers and 6 monographs. Under his supervision, 5 doctoral and 13 master's theses were executed. Two of his followers were in charge of surgical departments in Kazan (Professor N.P. Medvedev and Professor V.G. Morozov). From 1952 to 1968 Shubin V.N. was a vice-rector for scientific work at Kazan medical institute. On August 25, 2017, in a solemn atmosphere, the memorial plaque was installed on the facade of the “old clinic”. On the memorial plaque it is written “In this building from 1937 to 1971 worked an outstanding surgeon, scientist and public figure, Professor Shubin V.N.”. Scientific heritage of V.N. Shubin is our memory of Kazan school of surgeons. The study of life of V.N. Shubin is an incentive for all of us for thinking about modern medicine and surgery

    Transient thermoelectricity in a vibrating quantum dot in Kondo regime

    Full text link
    We investigate the time evolution of the thermopower in a vibrating quantum dot suddenly shifted into the Kondo regime via a gate voltage by adopting the time-dependent non-crossing approximation and linear response Onsager relations. Behaviour of the instantaneous thermopower is studied for a range of temperatures both in zero and strong electron-phonon coupling. We argue that inverse of the saturation value of decay time of thermopower to its steady state value might be an alternative tool in determination of the Kondo temperature and the value of the electron-phonon coupling strength.Comment: 5 pages, 4 figures, to appear in Physics Letters

    Baby MIND Experiment Construction Status

    Get PDF
    Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figure

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure

    Atomistic simulations of self-trapped exciton formation in silicon nanostructures: The transition from quantum dots to nanowires

    Full text link
    Using an approximate time-dependent density functional theory method, we calculate the absorption and luminescence spectra for hydrogen passivated silicon nanoscale structures with large aspect ratio. The effect of electron confinement in axial and radial directions is systematically investigated. Excited state relaxation leads to significant Stokes shifts for short nanorods with lengths less than 2 nm, but has little effect on the luminescence intensity. The formation of self-trapped excitons is likewise observed for short nanostructures only; longer wires exhibit fully delocalized excitons with neglible geometrical distortion at the excited state minimum.Comment: 10 pages, 4 figure

    Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment

    Get PDF
    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliation
    • …
    corecore