30,807 research outputs found

    Onset of η\eta-nuclear binding in a pionless EFT approach

    Full text link
    ηNNN\eta NNN and ηNNNN\eta NNNN bound states are explored in stochastic variational method (SVM) calculations within a pionless effective field theory (EFT) approach at leading order. The theoretical input consists of regulated NNNN and NNNNNN contact terms, and a regulated energy dependent ηN\eta N contact term derived from coupled-channel models of the N∗(1535)N^{\ast}(1535) nucleon resonance plus a regulated ηNN\eta NN contact term. A self consistency procedure is applied to deal with the energy dependence of the ηN\eta N subthreshold input, resulting in a weak dependence of the calculated η\eta-nuclear binding energies on the EFT regulator. It is found, in terms of the ηN\eta N scattering length aηNa_{\eta N}, that the onset of binding \eta\,^3He requires a minimal value of Re aηN\,a_{\eta N} close to 1 fm, yielding then a few MeV η\eta binding in \eta\,^4He. The onset of binding \eta\,^4He requires a lower value of Re aηN\,a_{\eta N}, but exceeding 0.7 fm.Comment: v4 consists of the published Physics Letters B version [31] plus Erratum ([30], Appendix A here); main results and conclusions remain intac

    Energy dynamics in a simulation of LAPD turbulence

    Get PDF
    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0k_\parallel = 0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0k_\parallel \ne 0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0k_\parallel=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data

    Quantum Lattice Fluctuations and Luminescence in C_60

    Full text link
    We consider luminescence in photo-excited neutral C_60 using the Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the luminescence we use a collective coordinate method where our collective coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon mode and extrapolates between the ground state "dimerisation" and the exciton polaron. There is good agreement for the existing luminescence peak spacing and fair agreement for the relative intensity. We predict the existence of further peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn, 36.90+

    Topological entropy of realistic quantum Hall wave functions

    Full text link
    The entanglement entropy of the incompressible states of a realistic quantum Hall system are studied by direct diagonalization. The subdominant term to the area law, the topological entanglement entropy, which is believed to carry information about topologic order in the ground state, was extracted for filling factors 1/3, 1/5 and 5/2. The results for 1/3 and 1/5 are consistent with the topological entanglement entropy for the Laughlin wave function. The 5/2 state exhibits a topological entanglement entropy consistent with the Moore-Read wave function.Comment: 6 pages, 6 figures; improved computations and graphics; added reference

    Quasi-Adiabatic Continuation in Gapped Spin and Fermion Systems: Goldstone's Theorem and Flux Periodicity

    Full text link
    We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that for a fermionic system with a spin gap, it is possible to insert π\pi-flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state.Comment: 19 pages, 2 figures, final version in press at JSTA
    • …
    corecore