34 research outputs found

    WriteSim TCExam - An open source text simulation environment for training novice researchers in scientific writing

    Get PDF
    BACKGROUND: The ability to write clearly and effectively is of central importance to the scientific enterprise. Encouraged by the success of simulation environments in other biomedical sciences, we developed WriteSim TCExam, an open-source, Web-based, textual simulation environment for teaching effective writing techniques to novice researchers. We shortlisted and modified an existing open source application - TCExam to serve as a textual simulation environment. After testing usability internally in our team, we conducted formal field usability studies with novice researchers. These were followed by formal surveys with researchers fitting the role of administrators and users (novice researchers) RESULTS: The development process was guided by feedback from usability tests within our research team. Online surveys and formal studies, involving members of the Research on Research group and selected novice researchers, show that the application is user-friendly. Additionally it has been used to train 25 novice researchers in scientific writing to date and has generated encouraging results. CONCLUSION: WriteSim TCExam is the first Web-based, open-source textual simulation environment designed to complement traditional scientific writing instruction. While initial reviews by students and educators have been positive, a formal study is needed to measure its benefits in comparison to standard instructional methods

    Do Stress Responses Promote Leukemia Progression? An Animal Study Suggesting a Role for Epinephrine and Prostaglandin-E2 through Reduced NK Activity

    Get PDF
    In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac) also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition
    corecore