8,880 research outputs found

    Status of the HIE-ISOLDE project at CERN

    Full text link
    The HIE-ISOLDE project represents a major upgrade of the ISOLDE nuclear facility with a mandate to significantly improve the quality and increase the intensity and energy of radioactive nuclear beams produced at CERN. The project will expand the experimental nuclear physics programme at ISOLDE by focusing on an upgrade of the existing Radioactive ion beam EXperiment (REX) linac with a 40 MV superconducting linac comprising thirty-two niobium-on-copper sputter-coated quarter-wave resonators housed in six cryomodules. The new linac will raise the energy of post-accelerated beams from 3 MeV/u to over 10 MeV/u. The upgrade will be staged to first deliver beam energies of 5.5 MeV/u using two high-β\beta cryomodules placed downstream of REX, before the energy variable section of the existing linac is replaced with two low-β\beta cryomodules and two additional high-β\beta cryomodules are installed to attain over 10 MeV/u with full energy variability above 0.45 MeV/u. An overview of the project including a status summary of the different R&D activities and the schedule will outlined.Comment: 7 pages, 12 figures, submitted to the Heavy Ion Accelerator Technology conference (HIAT) 2012, in Chicag

    Decorating Metal Oxide Surfaces with Fluorescent Chlorosulfonated Corroles

    Get PDF
    We have prepared 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrole (1), 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolatoaluminum(III) (1-Al), and 2,17-bis(chlorosulfonyl)-5,10,15-tris(pentafluorophenyl)corrolatogallium(III) (1-Ga). The metal complexes 1-Al and 1-Ga were isolated and characterized by electronic absorption and NMR spectroscopies, as well as by mass spectrometry. Relative emission quantum yields for 1, 1-Al, and 1-Ga, determined in toluene, are 0.094, 0.127, and 0.099, respectively. Reactions between 1, 1-Al, and 1-Ga and TiO2 nanoparticles (NPs) result in corrole–TiO_2 NP conjugates. The functionalized NP surfaces were investigated by solid-state Fourier transform infrared and X-ray photoelectron spectroscopies and by confocal fluorescence imaging. The fluorescence images for 1-Al–TiO_2 and 1-Ga–TiO_2 suggest a promising application of these NP conjugates as contrast agents for noninvasive optical imaging

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Diluted Networks of Nonlinear Resistors and Fractal Dimensions of Percolation Clusters

    Full text link
    We study random networks of nonlinear resistors, which obey a generalized Ohm's law, VIrV\sim I^r. Our renormalized field theory, which thrives on an interpretation of the involved Feynman Diagrams as being resistor networks themselves, is presented in detail. By considering distinct values of the nonlinearity r, we calculate several fractal dimensions characterizing percolation clusters. For the dimension associated with the red bonds we show that dred=1/νd_{\scriptsize red} = 1/\nu at least to order {\sl O} (\epsilon^4), with ν\nu being the correlation length exponent, and ϵ=6d\epsilon = 6-d, where d denotes the spatial dimension. This result agrees with a rigorous one by Coniglio. Our result for the chemical distance, d_{\scriptsize min} = 2 - \epsilon /6 - [ 937/588 + 45/49 (\ln 2 -9/10 \ln 3)] (\epsilon /6)^2 + {\sl O} (\epsilon^3) verifies a previous calculation by one of us. For the backbone dimension we find D_B = 2 + \epsilon /21 - 172 \epsilon^2 /9261 + 2 (- 74639 + 22680 \zeta (3))\epsilon^3 /4084101 + {\sl O} (\epsilon^4), where ζ(3)=1.202057...\zeta (3) = 1.202057..., in agreement to second order in ϵ\epsilon with a two-loop calculation by Harris and Lubensky.Comment: 29 pages, 7 figure

    Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency

    Full text link
    A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior. Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I discuss a generic tip velocity response to local stress and find that noise-free propagation is either at steady state or oscillatory, depending only on one material parameter. Noise gives rise to intermittency and quasi-periodicity. The theory explains the velocity oscillations and the complicated behavior seen in polymeric and amorphous brittle materials. I suggest experimental verifications and new connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3 postscript figures upon request from author at [email protected] or [email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm

    Critical Exponents for Diluted Resistor Networks

    Full text link
    An approach by Stephen is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky. By a decomposition of the principal Feynman diagrams we obtain a type of diagrams which again can be interpreted as resistor networks. This new interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent ϕ\phi up to second order in ϵ=6d\epsilon=6-d, where dd is the spatial dimension. Our result ϕ=1+ϵ/42+4ϵ2/3087\phi=1+\epsilon /42 +4\epsilon^2 /3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts--model formulation of the random resistor network.Comment: 27 pages, 14 figure

    Multifractal Dimensions for Branched Growth

    Full text link
    A recently proposed theory for diffusion-limited aggregation (DLA), which models this system as a random branched growth process, is reviewed. Like DLA, this process is stochastic, and ensemble averaging is needed in order to define multifractal dimensions. In an earlier work [T. C. Halsey and M. Leibig, Phys. Rev. A46, 7793 (1992)], annealed average dimensions were computed for this model. In this paper, we compute the quenched average dimensions, which are expected to apply to typical members of the ensemble. We develop a perturbative expansion for the average of the logarithm of the multifractal partition function; the leading and sub-leading divergent terms in this expansion are then resummed to all orders. The result is that in the limit where the number of particles n -> \infty, the quenched and annealed dimensions are {\it identical}; however, the attainment of this limit requires enormous values of n. At smaller, more realistic values of n, the apparent quenched dimensions differ from the annealed dimensions. We interpret these results to mean that while multifractality as an ensemble property of random branched growth (and hence of DLA) is quite robust, it subtly fails for typical members of the ensemble.Comment: 82 pages, 24 included figures in 16 files, 1 included tabl

    Dilatancy transition in a granular model

    Full text link
    We introduce a model of granular matter and use a stress ensemble to analyze shearing. Monte Carlo simulation shows the model to exhibit a second order phase transition, associated with the onset of dilatancy.Comment: Future versions can be obtained from: http://www.ma.utexas.edu/users/radin/papers/shear2.pd

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST
    corecore