630 research outputs found

    Resolved Stellar Populations at the Distance of Virgo

    Full text link
    Top of the wish list of any astronomer who wants to understand galaxy formation and evolution is to resolve the stellar populations of a sample of giant elliptical galaxies: to take spectra of the stars and make Colour-Magnitude Diagrams going down to the oldest main sequence turn-offs. It is only by measuring the relative numbers of stars on Main Sequence Turnoffs at ages ranging back to the time of the earliest star formation in the Universe that we can obtain unambiguous star formation histories. Understanding star formation histories of individual galaxies underpins all our theories of galaxy formation and evolution. To date we only have detailed star formation histories for the nearest-by objects in the Local Group, namely galaxies within 700kpc of our own. This means predominantly small diffuse dwarf galaxies in a poor group environment. To sample the full range of galaxy types and to consider galaxies in a high density environment (where much mass in the Universe resides) we need to be able to resolve stars at the distance of the Virgo (~17Mpc) or Fornax (~18Mpc) clusters. This ambitious goal requires an Extremely Large Telescope (ELT), with a diameter of 50-150m, operating in the optical/near-IR at its diffraction limit.Comment: proceedings IAU 232 "Extremely Large Telescopes", eds Whitelock, Leibundgut and Dennefel

    Selecting AGN through variability in SN datasets

    Full text link
    Variability is a main property of active galactic nuclei (AGN) and it was adopted as a selection criterion using multi epoch surveys conducted for the detection of supernovae (SNe). We have used two SN datasets. First we selected the AXAF field of the STRESS project, centered in the Chandra Deep Field South where, besides the deep X-ray surveys also various optical catalogs exist. Our method yielded 132 variable AGN candidates. We then extended our method including the dataset of the ESSENCE project that has been active for 6 years, producing high quality light curves in the R and I bands. We obtained a sample of ~4800 variable sources, down to R=22, in the whole 12 deg^2 ESSENCE field. Among them, a subsample of ~500 high priority AGN candidates was created using as secondary criterion the shape of the structure function. In a pilot spectroscopic run we have confirmed the AGN nature for nearly all of our candidates.Comment: 6 pages, 3 figures, contributed talk, proceedings of the 9th Hellenic Astronomical Society Conference, Athens, 20-24 September 200

    A reddening-free method to estimate the 56^{56}Ni mass of Type Ia supernovae

    Full text link
    The increase in the number of Type Ia supernovae (SNe\,Ia) has demonstrated that the population shows larger diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We have investigated a sample of SNe\,Ia near-infrared light curves and have correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the {\it B} light curve maximum) as follows : Lmax(1043ergs−1)=(0.039±0.004)×t2(J)(days)+(0.013±0.106)L_{max}(10^{43} erg s^{-1}) = (0.039 \pm 0.004) \times t_2(J)(days) + (0.013 \pm 0.106). 56^{56}Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to instantaneous energy generated by the nickel decay. We check this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10\% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The LmaxL_{max} vs. t2t_2 relation is applied to a sample of 40 additional SNe\,Ia with significant reddening (E(B−V)>E(B-V) > 0.1 mag) and a reddening-free bolometric luminosity function of SNe~Ia is established. The method is tested with the 56^{56}Ni mass measurement from the direct observation of γ−\gamma-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN\,2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe\,Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.Comment: 9 pages, 3 figures, Accepted to A&

    Dark Energy: Recent Developments

    Get PDF
    A six parameter cosmological model, involving a vacuum energy density that is extremely tiny compared to fundamental particle physics scales, describes a large body of increasingly accurate astronomical data. In a first part of this brief review we summarize the current situation, emphasizing recent progress. An almost infinitesimal vacuum energy is only the simplest candidate for a cosmologically significant nearly homogeneous exotic energy density with negative pressure, generically called Dark Energy. If general relativity is assumed to be also valid on cosmological scales, the existence of such a dark energy component that dominates the recent universe is now almost inevitable. We shall discuss in a second part the alternative possibility that general relativity has to be modified on distances comparable to the Hubble scale. It will turn out that observational data are restricting theoretical speculations more and more. Moreover, some of the recent proposals have serious defects on a fundamental level (ghosts, acausalities, superluminal fluctuations).Comment: 19 pages, 5 figures, invited ``brief review'' for Modern Physics Letters A; to appea

    Astrophysics in 2006

    Get PDF
    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.Comment: 244 pages, no figure
    • …
    corecore