2,564 research outputs found

    Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4

    Full text link
    We consider the weight spectrum of a class of quasi-perfect binary linear codes with code distance 4. For example, extended Hamming code and Panchenko code are the known members of this class. Also, it is known that in many cases Panchenko code has the minimal number of weight 4 codewords. We give exact recursive formulas for the weight spectrum of quasi-perfect codes and their dual codes. As an example of application of the weight spectrum we derive a lower estimate for the conditional probability of correction of erasure patterns of high weights (equal to or greater than code distance).Comment: 5 pages, 11 references, 2 tables; some explanations and detail are adde

    Atomic States Entanglement in Carbon Nanotubes

    Full text link
    The entanglement of two atoms (ions) doped into a carbon nanotube has been investigated theoretically. Based on the photon Green function formalism for quantizing electromagnetic field in the presence of carbon nanotubes, small-diameter metallic nanotubes are shown to result in a high degree of the two-qubit atomic entanglement for long times due to the strong atom-field coupling.Comment: 4 pages, 2 figure

    Order statistics and heavy-tail distributions for planetary perturbations on Oort cloud comets

    Full text link
    This paper tackles important aspects of comets dynamics from a statistical point of view. Existing methodology uses numerical integration for computing planetary perturbations for simulating such dynamics. This operation is highly computational. It is reasonable to wonder whenever statistical simulation of the perturbations can be much more easy to handle. The first step for answering such a question is to provide a statistical study of these perturbations in order to catch their main features. The statistical tools used are order statistics and heavy tail distributions. The study carried out indicated a general pattern exhibited by the perturbations around the orbits of the important planet. These characteristics were validated through statistical testing and a theoretical study based on Opik theory.Comment: 9 pages, 12 figures, submitted for publication in Astronomy and Astrophysic

    Base pair opening and bubble transport in a DNA double helix induced by a protein molecule in a viscous medium

    Full text link
    We study the nonlinear dynamics of a protein-DNA molecular system by treating DNA as a set of two coupled linear chains and protein in the form of a single linear chain sliding along the DNA at the physiological temperature in a viscous medium. The nonlinear dynamics of the above molecular system in general is governed by a perturbed nonlinear Schr\"{o}dinger equation. In the non-viscous limit, the equation reduces to the completely integrable nonlinear Schr\"{o}dinger (NLS) equation which admits N-soliton solutions. The soliton excitations of the DNA bases make localized base pair opening and travel along the DNA chain in the form of a bubble. This may represent the bubble generated during the transcription process when an RNA-polymerase binds to a promoter site in the DNA double helical chain. The perturbed NLS equation is solved using a perturbation theory by treating the viscous effect due to surrounding as a weak perturbation and the results show that the viscosity of the solvent in the surrounding damps out the amplitude of the soliton.Comment: 4. Submitted to Phys. Rev.

    Benchmarking calculations of excitonic couplings between bacteriochlorophylls

    Full text link
    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions

    Moods in everyday situations: Effects of menstrual cycle, work, and personality

    No full text
    Objective: This study examined women’s moods on work and off days during different phases of the menstrual cycle. Method: Self-reports of the moods angry, happy, sad, stressed, tired, and anxious were obtained on two work and two off days during the luteal and follicular phases of the menstrual cycle in 203 nurses. Individual differences in anger expression, anxiety, and hostility were assessed. Results: Ratings of anxious, stressed, and tired were higher and happy and sad were lower on the workday than the off day. Menstrual cycle phase was associated with mood differences depending on the day (work, off work) and individual differences in personality traits. Conclusions: The experience of moods in everyday life is affected by overall levels of stress and phase of the menstrual cycle. The findings suggest the need to refine sociopsychobiological and clinical models of mood regulation and of risk for disease
    • …
    corecore