43,932 research outputs found
Takahashi Integral Equation and High-Temperature Expansion of the Heisenberg Chain
Recently a new integral equation describing the thermodynamics of the 1D
Heisenberg model was discovered by Takahashi. Using the integral equation we
have succeeded in obtaining the high temperature expansion of the specific heat
and the magnetic susceptibility up to O((J/T)^{100}). This is much higher than
those obtained so far by the standard methods such as the linked-cluster
algorithm. Our results will be useful to examine various approximation methods
to extrapolate the high temperature expansion to the low temperature region.Comment: 5 pages, 4 figures, 2 table
The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered
Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects
A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads
Status of the joint LIGO--TAMA300 inspiral analysis
We present the status of the joint search for gravitational waves from
inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data
Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the
LIGO and TAMA collaborations. In this paper we discuss what has been learned
from an analysis of a subset of the data sample reserved as a ``playground''.
We determine the coincidence conditions for parameters such as the coalescence
time and chirp mass by injecting simulated Galactic binary neutron star signals
into the data stream. We select coincidence conditions so as to maximize our
efficiency of detecting simulated signals. We obtain an efficiency for our
coincident search of 78 %, and show that we are missing primarily very distant
signals for TAMA300. We perform a time slide analysis to estimate the
background due to accidental coincidence of noise triggers. We find that the
background triggers have a very different character from the triggers of
simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum
Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos,
minor change
Weak Lensing of Galaxy Clusters in MOND
We study weak gravitational lensing of galaxy clusters in terms of the MOND
(MOdified Newtonian Dynamics) theory. We calculate shears and convergences of
background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and
the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare
them with observational data. The mass profile is modeled as a sum of X-ray
gas, galaxies and dark halo. For the shear as a function of the angular radius,
MOND predicts a shallower slope than the data irrespective of the critical
acceleration parameter . The dark halo is necessary to explain the data
for any and for three interpolation functions. If the dark halo is
composed of massive neutrinos, its mass should be heavier than 2 eV. However
the constraint still depends on the dark halo model and there are systematic
uncertainties, and hence the more careful study is necessary to put a stringent
constraint.Comment: 12 pages, 7 figures, references added, minor changes, accepted for
publication in Ap
Light Element Synthesis in High Entropy Relativistic Flows Associated with Gamma Ray Bursts
We calculate and discuss the light element freeze-out nucleosynthesis in high
entropy winds and fireballs for broad ranges of entropy-per-baryon, dynamic
timescales characterizing relativistic expansion, and neutron-to-proton ratios.
With conditions characteristic of Gamma Ray Bursts (GRBs) we find that
deuterium production can be prodigious, with final abundance values 2H/H
approximately 2%, depending on the fireball isospin, late time dynamics, and
the effects of neutron decoupling- induced high energy non-thermal nuclear
reactions. This implies that there potentially could be detectable local
enhancements in the deuterium abundance associated with GRB events.Comment: 14 pages 3 figure
Spin Waves in Random Spin Chains
We study quantum spin-1/2 Heisenberg ferromagnetic chains with dilute, random
antiferromagnetic impurity bonds with modified spin-wave theory. By describing
thermal excitations in the language of spin waves, we successfully observe a
low-temperature Curie susceptibility due to formation of large spin clusters
first predicted by the real-space renormalization-group approach, as well as a
crossover to a pure ferromagnetic spin chain behavior at intermediate and high
temperatures. We compare our results of the modified spin-wave theory to
quantum Monte Carlo simulations.Comment: 3 pages, 3 eps figures, submitted to the 47th Conference on Magnetism
and Magnetic Material
- …