10,015 research outputs found

    Dilaton dominance in the early Universe dilutes Dark Matter relic abundances

    Full text link
    The role of the dilaton field and its coupling to matter may result to a dilution of Dark Matter (DM) relic densities. This is to be contrasted with quintessence scenarios in which relic densities are augmented, due to modification of the expansion rate, since Universe is not radiation dominated at DM decoupling. Dilaton field, besides this, affects relic densities through its coupling to dust which tends to decrease relic abundances. Thus two separate mechanisms compete each other resulting, in general, to a decrease of the relic density. This feature may be welcome and can rescue the situation if Direct Dark Matter experiments point towards small neutralino-nucleon cross sections, implying small neutralino annihilation rates and hence large relic densities, at least in the popular supersymmetric scenarios. In the presence of a diluting mechanism both experimental constraints can be met. The role of the dilaton for this mechanism has been studied in the context of the non-critical string theory but in this work we follow a rather general approach assuming that the dilaton dominates only at early eras long before Big Bang Nucleosynthesis.Comment: 11 pages, Latex, 4 figures: Comments and references added, version to appear in Phys. Rev.

    Pre-Inflation in the Presence of Conformal Coupling

    Full text link
    We consider a massless scalar field, conformally coupled to the Ricci scalar curvature, in the pre-inflation era of a closed FLRW Universe. The scalar field potential can be of the form of the Coleman-Weinberg one-loop potential, which is flat at the origin and drives the inflationary evolution. For positive values of the conformal parameter \xi, less than the critical value xi_c=(1/6), the model admits exact solutions with non-zero scale factor and zero initial Hubble parameter. Thus these solutions can be matched smoothly to the so called Pre-Big-Bang models. At the end of this pre-inflation era one can match inflationary solutions by specifying the form of the potential and the whole solution is of the class C^(1).Comment: 11 pages, 5 figures, LaTeX, Accepted for publication in MPL

    Non-critical String Cosmologies

    Full text link
    Non-critical String Cosmologies are offered as an alternative to Standard Big Bang Cosmology. The new features encompassed within the dilaton dependent non-critical terms affect the dynamics of the Universe\'s evolution in an unconventional manner being in agreement with the cosmological data. Non-criticality is responsible for a late transition to acceleration at redshifts z=0.2. The role of the uncoupled rolling dilaton to relic abundance calculations is discussed. The uncoupled rolling dilaton dilutes the neutralino relic densities in supersymmetric theories by factors of ten, relaxing considerably the severe WMAP Dark Matter constraints, while at the same time leaves almost unaffected the baryon density in agreement with primordial Nucleosynthesis.Comment: 16 pages, 7 figures, conference tal

    Uses of a small field value which falls from a metastable maximum over cosmological times

    Full text link
    We consider a small, metastable maximum vacuum expectation value b0b_0 of order of a few eV, for a pseudoscalar Goldstone-like field, which is related to the scalar inflaton field ϕ\phi in an idealized model of a cosmological, spontaneously-broken chiral symmetry. The b field allows for relating semi-quantitatively three distinct quantities in a cosmological context. (1) A very small, residual vacuum energy density or effective cosmological constant of ~ lambda b_0^4 ~ 2.7 x 10^{-47}GeV^4, for lambda ~ 3 x 10^{-14}, the same as an empirical inflaton self-coupling. (2) A tiny neutrino mass, less then b_0. (3) A possible small variation downward of the proton to electron mass ratio over cosmological time. The latter arises from the motion downward of the bb field over cosmological time, toward a nonzero limiting value as tt \to \infty. Such behavior is consistent with an equation of motion. We argue that hypothetical b quanta, potentially inducing new long-range forces, are absent, because of negative, effective squared mass in an equation of motion for bb-field fluctuations.Comment: version accepted for publication in Mod.Phys.Lett.

    Cosmology of biased discrete symmetry breaking

    Get PDF
    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario

    Property of the spectrum of large-scale magnetic fields from inflation

    Get PDF
    The property of the spectrum of large-scale magnetic fields generated due to the breaking of the conformal invariance of the Maxwell theory through some mechanism in inflationary cosmology is studied. It is shown that the spectrum of the generated magnetic fields should not be perfectly scale-invariant but be slightly red so that the amplitude of large-scale magnetic fields can be stronger than 1012\sim 10^{-12}G at the present time. This analysis is performed by assuming the absence of amplification due to the late-time action of some dynamo (or similar) mechanism.Comment: 8 pages, no figure; references correcte

    Nonthermal Supermassive Dark Matter

    Get PDF
    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.Comment: 11 page LaTeX file. No major changes. Version accepted by PR

    Scattering of Dirac and Majorana Fermions off Domain Walls

    Full text link
    We investigate the interaction of fermions having both Dirac and left-handed and right-handed Majorana mass terms with vacuum domain walls. By solving the equations of motion in thin-wall approximation, we calculate the reflection and transmission coefficients for the scattering of fermions off walls.Comment: 6 pages, 1 figure, some typos corrected, one reference added, major revisions, title changed, version accepted for publication in Phys. Rev.

    Expression of the insulin-like growth factor-II/mannose-6-phosphate receptor in multiple human tissues during fetal life and early infancy

    Get PDF
    The insulin like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor has been detected in many cells and tissues. In the rat, there is a dramatic developmental regulation of IGF-II/M6P receptor expression, the receptor being high in fetal and neonatal tissues and declining thereafter. We have systematically studied the expression of the human IGF-II/M6P receptor protein in tissues from 10 human fetuses and infants (age 23 weeks gestation to 24 months postnatal). We have asked 1) whether there is differential expression among different organs, and 2) whether or not the human IGF-II/M6P receptor is developmentally regulated from 23 weeks gestation to 24 months postnatal. Protein was extracted from human tissues using a buffer containing 2% sodium dodecyl sulfate and 2% Triton X-100. Aliquots of the protein extracts were analyzed by sodium dodecyl sulfate- polyacrylamide gel electrophoresis and immunoblotting using an anti-IGF- II/M6P receptor antiserum (no. 66416) and 125I-protein A or an immunoperoxidase stain. IGF-II/M6P receptor immunoreactivity was detected in all tissues studied with the highest amount of receptor being expressed in heart, thymus, and kidney and the lowest receptor content being measured in brain and muscle. The receptor content in ovary, testis, lung, and spleen was intermediate. The apparent molecular weight of the IGF-II/M6P receptor (220,000 kilos without reduction of disulfide bonds) varied among the different tissues: in brain the receptor was of lower molecular weight than in other organs. Immunoquantitation experiments employing 125I-protein A and protein extracts from human kidney at different ages revealed a small, albeit not significant, difference of the receptor content between fetal and postnatal tissues: as in other species, larger amounts of receptor seemed to be present in fetal than in postnatal organs. In addition, no significant difference of the receptor content between human fetal liver and early postnatal liver was measured employing 125I-protein A- immunoquantitation in three fetal and five postnatal liver tissue samples. The distribution of IGF-binding protein (IGEBP) species, another abundant and major class of IGF binding principles, was also measured in human fetal and early postnatal lung, liver, kidney, muscle, and brain using Western ligand blotting with 125I-IGF-II: as with IGF-II/M6P receptor immunoreactivity there was differential expression of the different classes of IGFBPs in the various organs
    corecore