2,481 research outputs found
Status of Spin Physics - Experimental Summary
The current status of spin physics experiments, based on talks presented at
the Third Circum-Pan-Pacific Symposium on High Energy Spin Physics held in
Beijing, 2001, is summarized in this article. Highlights of recent experimental
results at SLAC, JLab, and DESY, as well as future plans at these facilities
and at RHIC-spin are discussed.Comment: 18 pages, 7 figures, Invited talk presented at the Third
Circum-Pan-Pacific Symposium on High Energy Spin Physics held in Beijing,
October, 200
A Perturbative/Variational Approach to Quantum Lattice Hamiltonians
We propose a method to construct the ground state of local
lattice hamiltonians with the generic form , where
is a coupling constant and is a hamiltonian with a non degenerate ground
state . The method is based on the choice of an exponential ansatz
, which is a sort of generalized
lattice version of a Jastrow wave function. We combine perturbative and
variational techniques to get succesive approximations of the operator
. Perturbation theory is used to set up a variational method which
in turn produces non perturbative results. The computation with this kind of
ansatzs leads to associate to the original quantum mechanical problem a
statistical mechanical system defined in the same spatial dimension. In some
cases these statistical mechanical systems turn out to be integrable, which
allow us to obtain exact upper bounds to the energy. The general ideas of our
method are illustrated in the example of the Ising model in a transverse field.Comment: 27 pages, three .ps figures appended, DFTUZ 94-2
Constraints on the Existence of Chiral Fermions in Interacting Lattice Theories
It is shown that an interacting theory, defined on a regular lattice, must
have a vector-like spectrum if the following conditions are satisfied:
(a)~locality, (b)~relativistic continuum limit without massless bosons, and
(c)~pole-free effective vertex functions for conserved currents.
The proof exploits the zero frequency inverse retarded propagator of an
appropriate set of interpolating fields as an effective quadratic hamiltonian,
to which the Nielsen-Ninomiya theorem is applied.Comment: LaTeX, 9 pages, WIS--93/56--JUNE--P
Hamiltonian domain wall fermions at strong coupling
We apply strong-coupling perturbation theory to gauge theories containing
domain-wall fermions in Shamir's surface version. We construct the effective
Hamiltonian for the color-singlet degrees of freedom that constitute the
low-lying spectrum at strong coupling. We show that the effective theory is
identical to that derived from naive, doubled fermions with a mass term, and
hence that domain-wall fermions at strong coupling suffer both doubling and
explicit breaking of chiral symmetry. Since we employ a continuous fifth
dimension whose extent tends to infinity, our result applies to overlap
fermions as well.Comment: Revtex, 21 pp. Some changes in Introduction, dealing with consistency
with previous wor
CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations
The COntractor REnormalization group (CORE) method, a new approach to solving
Hamiltonian lattice systems, is presented. The method defines a systematic and
nonperturbative means of implementing Kadanoff-Wilson real-space
renormalization group transformations using cluster expansion and contraction
techniques. We illustrate the approach and demonstrate its effectiveness using
scalar field theory, the Heisenberg antiferromagnetic chain, and the
anisotropic Ising chain. Future applications to the Hubbard and t-J models and
lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st
Proton polarizability and the Lamb shift in muonic hydrogen
The proton structure and proton polarizability corrections to the Lamb shift
of electronic hydrogen and muonic hydrogen were evaluated on the basis of
modern experimental data on deep inelastic structure functions. Numerical value
of proton polarizability contribution to (2P-2S) Lamb shift is equal to 4.4
GHz.Comment: 8 pages, LaTeX2.09, 2 figures, uses linedraw.st
Intrinsic transverse momentum and the polarized Drell-Yan process
In this paper we study the cross section at leading order in for
polarized Drell-Yan scattering at measured lepton-pair transverse momentum
. We find that for a hadron with spin the quark content at leading
order is described by six distribution functions for each flavor, which depend
on both the lightcone momentum fraction , and the quark transverse momentum
\bbox{k}_T^2. These functions are illustrated for a free-quark ensemble. The
cross sections for both longitudinal and transverse polarizations are expressed
in terms of convolution integrals over the distribution functions.Comment: 25 pages, REVTEX 3.0 (3 figures included in separate LATEX file using
feynman.tex), NIKHEF-94-P1 (Revised version
New Approach for Measuring at Future -Factories
It is suggested that the measurements of hadronic invariant mass ()
distributons in the inclusive decays can be
useful in extracting the CKM matrix element . We investigated
hadronic invariant mass distributions within the various theoretical models of
HQET, FAC and chiral lagrangian as well as ACCMM model. It is also emphasized
that the distribution even at the region in the inclusive
are effetive in selecting the events, experimentally viable at
the future asymmetric factories, with better theoretical understandings.Comment: 11 pages not including 1 figur
Can Close the Supersymmetric Higgs Production Window?
We show that the present limit from CLEO on the inclusive decay provides strong constraints on the parameters of the charged Higgs
sector in two-Higgs-Doublet-Models. Only a slight improvement in the
experimental bound will exclude the region in the Supersymmetric Higgs
parameter space which is inaccessible to collider searches.Comment: 8 pages plus 3 figures (available by request), latex,
ANL-HEP-PR-92-110. Substantial revision to text, results unchange
Spin Dependence of Massive Lepton Pair Production in Proton-Proton Collisions
We calculate the transverse momentum distribution for the production of
massive lepton-pairs in longitudinally polarized proton-proton reactions at
collider energies within the context of perturbative quantum chromodynamics.
For values of the transverse momentum Q_T greater than roughly half the pair
mass Q, Q_T > Q/2, we show that the differential cross section is dominated by
subprocesses initiated by incident gluons, provided that the polarized gluon
density is not too small. Massive lepton-pair differential cross sections
should be a good source of independent constraints on the polarized gluon
density, free from the experimental and theoretical complications of photon
isolation that beset studies of prompt photon production. We provide
predictions for the spin-averaged and spin-dependent differential cross
sections as a function of Q_T at energies relevant for the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven, and we compare these with predictions for
real prompt photon production.Comment: 34 pages, RevTeX including 17 figures in .ps file
- âŠ