Abstract

We propose a method to construct the ground state ψ(λ)\psi(\lambda) of local lattice hamiltonians with the generic form H0+λH1H_0 + \lambda H_1, where λ\lambda is a coupling constant and H0H_0 is a hamiltonian with a non degenerate ground state ψ0\psi_0. The method is based on the choice of an exponential ansatz ψ(λ)=exp(U(λ))ψ0\psi(\lambda) = {\rm exp}(U(\lambda)) \psi_0, which is a sort of generalized lattice version of a Jastrow wave function. We combine perturbative and variational techniques to get succesive approximations of the operator U(λ)U(\lambda). Perturbation theory is used to set up a variational method which in turn produces non perturbative results. The computation with this kind of ansatzs leads to associate to the original quantum mechanical problem a statistical mechanical system defined in the same spatial dimension. In some cases these statistical mechanical systems turn out to be integrable, which allow us to obtain exact upper bounds to the energy. The general ideas of our method are illustrated in the example of the Ising model in a transverse field.Comment: 27 pages, three .ps figures appended, DFTUZ 94-2

    Similar works

    Full text

    thumbnail-image

    Available Versions