4,604 research outputs found

    Exciton-polariton emission from organic semiconductor optical waveguides

    Full text link
    We photo-excite slab polymer waveguides doped with J-aggregating dye molecules and measure the leaky emission from strongly coupled waveguide exciton polariton modes at room temperature. We show that the momentum of the waveguide exciton polaritons can be controlled by modifying the thickness of the excitonic waveguide. Non-resonantly pumped excitons in the slab excitonic waveguide decay into transverse electric and transverse magnetic strongly coupled exciton waveguide modes with radial symmetry. These leak to cones of light with radial and azimuthal polarizations

    Randomly poled crystals as a source of photon pairs

    Full text link
    Generation of photon pairs from randomly poled nonlinear crystals is investigated using analytically soluble model and numerical calculations. Randomly poled crystals are discovered as sources of entangled ultra broad-band signal and idler fields. Their photon-pair generation rates scale linearly with the number of domains. Entanglement times as short as several fs can be reached. Comparison with chirped periodically-poled structures is given and reveals close similarity.Comment: 13 pages, 29 figure

    Effect of W, LR, and LM Tests on the Performance of Preliminary Test Ridge Regression Estimators

    Get PDF
    This paper combines the idea of preliminary test and ridge regression methodology, when it is suspected that the regression coefficients may be restricted to a subspace. The preliminary test ridge regression estimators (PTRRE) based on the Wald (W), Likelihood Ratio (LR) and Lagrangian Multiplier (LM) tests are considered. The bias and the mean square errors (MSE) of the proposed estimators are derived under both null and alternative hypotheses. By studying the MSE criterion, the regions of optimality of the estimators are determined. Under the null hypothesis, the PTRRE based on LM test has the smallest risk followed by the estimators based on LR and W tests. However, the PTRRE based on W test performs the best followed by the LR and LM based estimators when the parameter moves away from the subspace of the restrictions. The conditions of superiority of the proposed estimator for both ridge parameter k and departure parameter (triangle symbol) are provided. Some graphical representations have been presented which support the findings of the paper. Some tables for maximum and minimum guaranteed relative efficiency of the proposed estimators have been provided. These tables allow us to determine the optimum level of significance corresponding to the optimum estimators among proposed estimators. Finally, we concluded that the optimum choice of the level of significance becomes the traditional choice by using the W test for all non-negative ridge parameter, k.Dominance; Lagrangian Multiplier; Likelihood Ratio Test; MSE; Non-central Chisquare and F; Ridge Regression; Superiority; Wald Test.

    Role of entanglement in two-photon imaging

    Get PDF
    The use of entangled photons in an imaging system can exhibit effects that cannot be mimicked by any other two-photon source, whatever the strength of the correlations between the two photons. We consider a two-photon imaging system in which one photon is used to probe a remote (transmissive or scattering) object, while the other serves as a reference. We discuss the role of entanglement versus correlation in such a setting, and demonstrate that entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure

    Stimulated Emission from a single excited atom in a waveguide

    Full text link
    We study stimulated emission from an excited two-level atom coupled to a waveguide containing an incident single-photon pulse. We show that the strong photon correlation, as induced by the atom, plays a very important role in stimulated emission. Additionally, the temporal duration of the incident photon pulse is shown to have a marked effect on stimulated emission and atomic lifetime.Comment: 6 pages, 3 figure

    To make a nanomechanical Schr\"{o}dinger-cat mew

    Get PDF
    By an explicite calculation of Michelson interferometric output intensities in the optomechanical scheme proposed by Marshall et al. (2003), an oscillatory factor is obtained that may go down to zero just at the time a visibility revival ought to be observed. Including a properly tuned phase shifter offers a simple amendment to the situation. By using a Pockels phase shifter with fast time-dependent modulation in one arm, one may obtain further possibilities to enrich the quantum state preparation and reconstruction abilities of the original scheme, thereby improving the chances to reliably detect genuine quantum behaviour of a nanomechanical oscillator.Comment: For Proc. DICE-2010 (Castiglioncello), to be published in J. Phys. Conf. Ser., 201

    Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments

    Get PDF
    Two different experimental techniques for preparation and analyzing superpositions of the Gaussian and Laguerre-Gassian modes are presented. This is done exploiting an interferometric method on the one hand and using computer generated holograms on the other hand. It is shown that by shifting the hologram with respect to an incoming Gaussian beam different superpositions of the Gaussian and the Laguerre-Gaussian beam can be produced. An analytical expression between the relative phase and the amplitudes of the modes and the displacement of the hologram is given. The application of such orbital angular momenta superpositions in quantum experiments such as quantum cryptography is discussed.Comment: 18 pages, 4 figures. to appear in Journal of Optics

    Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    Full text link
    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N_s, the fidelity is minimized by any multimode Fock state with N_s total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version. The major change from v2 is that Section IV has been re-organized, with a no-go result for target detection under high loss conditions highlighted. The last sentence of the abstract has been deleted to conform to the arXiv word limit. Please see the PDF for the full abstrac
    corecore