11,445 research outputs found

    The Epstein-Glaser causal approach to the Light-Front QED4_{4}. I: Free theory

    Full text link
    In this work we present the study of light-front field theories in the realm of axiomatic theory. It is known that when one uses the light-cone gauge pathological poles (k+)−n(k^{+}) ^{-n} arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use rigorous mathematical machinery of distributions combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how analytic representation for propagators arises by requiring general physical properties in the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar, fermionic fields and for the dynamical components of the electromagnetic field. In conclusion, we introduce the Epstein-Glaser causal method in order to have a mathematical rigorous treatment of the free propagators of the theory, allowing us to discuss the general treatment for propagators of the type (k+)−n(k^{+}) ^{-n}. Moreover, we show that at given conditions our results reproduce known prescriptions in the literature.Comment: 34 pages, v2 matching the published versio

    Causal approach for the electron-positron scattering in Generalized Quantum Electrodynamics

    Full text link
    In this paper we study the generalized electrodynamics contribution for the electron-positron scattering process, e−e+→e−e+e^{-}e^{+}\rightarrow e^{-}e^{+}, the Bhabha scattering. Within the framework of the standard model, for energies larger when compared to the electron mass, we calculate the cross section expression for the scattering process. This quantity is usually calculated in the framework of the Maxwell electrodynamics and, by phenomenological reasons, corrected by a cut-off parameter. On the other hand, by considering the generalized electrodynamics instead of Maxwell's, we can show that the effects played by the Podolsky mass is actually a natural cut-off parameter for this scattering process. Furthermore, by means of experimental data of Bhabha scattering we will estimate its lower bound value. Nevertheless, in order to have a mathematically well defined description of our study we shall present our discussion in the framework of the Epstein-Glaser causal theory.Comment: 24 pages, V2 to match published versio

    Inequivalent classes of closed three-level systems

    Full text link
    We show here that the Λ\Lambda and V configurations of three-level atomic systems, while they have recently been shown to be equivalent for many important physical quantities when driven with classical fields [M. B. Plenio, Phys. Rev. A \textbf{62}, 015802 (2000)], are no longer equivalent when coupled via a quantum field. We analyze the physical origin of such behavior and show how the equivalence between these two configurations emerges in the semiclassical limit.Comment: 4 pages, 1 figure. To appear as Brief Report in Physical Review

    Simple quantum model for light depolarization

    Full text link
    Depolarization of quantum fields is handled through a master equation of the Lindblad type. The specific feature of the proposed model is that it couples dispersively the field modes to a randomly distributed atomic reservoir, much in the classical spirit of dealing with this problem. The depolarizing dynamics resulting from this model is analyzed for relevant states.Comment: Improved version. Accepted for publication in the Journal of the Optical Society of America
    • …
    corecore