20 research outputs found

    Components of the Hematopoietic Compartments in Tumor Stroma and Tumor-Bearing Mice

    Get PDF
    Solid tumors are composed of cancerous cells and non-cancerous stroma. A better understanding of the tumor stroma could lead to new therapeutic applications. However, the exact compositions and functions of the tumor stroma are still largely unknown. Here, using a Lewis lung carcinoma implantation mouse model, we examined the hematopoietic compartments in tumor stroma and tumor-bearing mice. Different lineages of differentiated hematopoietic cells existed in tumor stroma with the percentage of myeloid cells increasing and the percentage of lymphoid and erythroid cells decreasing over time. Using bone marrow reconstitution analysis, we showed that the tumor stroma also contained functional hematopoietic stem cells. All hematopoietic cells in the tumor stroma originated from bone marrow. In the bone marrow and peripheral blood of tumor-bearing mice, myeloid populations increased and lymphoid and erythroid populations decreased and numbers of hematopoietic stem cells markedly increased with time. To investigate the function of hematopoietic cells in tumor stroma, we co-implanted various types of hematopoietic cells with cancer cells. We found that total hematopoietic cells in the tumor stroma promoted tumor development. Furthermore, the growth of the primary implanted Lewis lung carcinomas and their metastasis were significantly decreased in mice reconstituted with IGF type I receptor-deficient hematopoietic stem cells, indicating that IGF signaling in the hematopoietic tumor stroma supports tumor outgrowth. These results reveal that hematopoietic cells in the tumor stroma regulate tumor development and that tumor progression significantly alters the host hematopoietic compartment

    GATeL: A V&V Platform for SCADE Models

    No full text
    International audienc

    The role of the organic cation in developing efficient green perovskite LEDs based on quasi-2D perovskite heterostructures

    No full text
    Two dimensional/three-dimensional (2D/3D) metal halide perovskite heterostructures have attracted great interest in photovoltaic and light-emitting diode (LEDs) applications. In both, their implementation results in an improvement in device efficiency yet the understanding of these heterostructures remains incomplete. In this work the role of organic cations, essential for the formation of 2D perovskite structures is unraveled, in a range of metal halide perovskite heterostructures. These heterostructures are used to fabricate efficient green perovskite LEDs and a strong dependence between cation content and device performance is shown. The crystal structure, charge-carrier transport and dynamics, and the electronic structure of these heterostructures are studied and it is shown that the presence of crystalline 2D perovskite inhibits electron injection and ultimately lowers device performance. This work highlights the importance of optimizing the composition of these heterostructures in ensuring optimal device performance across all parameters and suggests that developing routes to inject charge-carriers directly into 2D perovskite structures will be important in ensuring the continued development of perovskite LEDs based on these heterostructures.</p

    The Role of the Organic Cation in Developing Efficient Green Perovskite LEDs Based on Quasi‐2D Perovskite Heterostructures

    No full text
    International audienceTwo dimensional/three-dimensional (2D/3D) metal halide perovskite heterostructures have attracted great interest in photovoltaic and light-emitting diode (LEDs) applications. In both, their implementation results in an improvement in device efficiency yet the understanding of these heterostructures remains incomplete. In this work the role of organic cations, essential for the formation of 2D perovskite structures is unraveled, in a range of metal halide perovskite heterostructures. These heterostructures are used to fabricate efficient green perovskite LEDs and a strong dependence between cation content and device performance is shown. The crystal structure, charge-carrier transport and dynamics, and the electronic structure of these heterostructures are studied and it is shown that the presence of crystalline 2D perovskite inhibits electron injection and ultimately lowers device performance. This work highlights the importance of optimizing the composition of these heterostructures in ensuring optimal device performance across all parameters and suggests that developing routes to inject chargecarriers directly into 2D perovskite structures will be important in ensuring the continued development of perovskite LEDs based on these heterostructures
    corecore