126 research outputs found

    Detecting entanglement using a double quantum dot turnstile

    Full text link
    We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand''.Comment: 5 pages, 2 figures - published versio

    Quantum Pumping and Quantized Magnetoresistance in a Hall Bar

    Full text link
    We show how a dc current can be generated in a Hall bar without applying a bias voltage. The Hall resistance RHR_H that corresponds to this pumped current is quantized, just as in the usual integer quantum Hall effect (IQHE). In contrast with the IQHE, however, the longitudinal resistance RxxR_{xx} does not vanish on the plateaus, but equals the Hall resistance. We propose an experimental geometry to measure the pumped current and verify the predicted behavior of RHR_H and RxxR_{xx}.Comment: RevTeX, 3 figure

    Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors

    Full text link
    We predict the existence of spatiotemporal solitons (``light bullets'') in two-dimensional self-induced transparency media embedded in a Bragg grating. The "bullets" are found in an approximate analytical form, their stability being confirmed by direct simulations. These findings suggest new possibilities for signal transmission control and self-trapping of light.Comment: RevTex, 3 pages, 2 figures, to be published in PR

    Resonance approximation and charge loading/unloading in adiabatic quantum pumping

    Full text link
    Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission. The pumped charge is close to an integer number of electrons when the pumping contour surrounds a resonance, but the transmission remains small on the contour. For non-interacting electrons, we give a quantitative account of the detailed exchange of electrons between the dot and the leads (to the electron reservoirs) during a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot's Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged between the dot and each lead through a single resonance point is related to the relative couplings of the dot and the leads at this resonance. If each resonance point along the pumping contour is dominated by the coupling to a single lead (which also implies a very small transmission), then the crossing of each such resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks of the transmissions between the various leads.Comment: 10 pages, 4 figure

    Helicity Modulus and Effective Hopping in the Two-Dimensional Hubbard Model Using Slave-Boson Methods

    Full text link
    The slave-boson mean-field method is used to study the two-dimensional Hubbard model. A magnetic phase diagram allowing for paramagnetism, weak- and strong ferromagnetism and antiferromagnetism, including all continuous and first-order transitions, is constructed and compared to the corresponding phase diagram using the Hartree-Fock approximation (HFA). Magnetically ordered regions are reduced by a factor of about 3 along both the t/Ut/U and density axes compared to the HFA. Using the spin-rotation invariant formulation of the slave-boson method the helicity modulus is computed and for half-filling is found to practically coincide with that found using variational Monte Carlo calculations using the Gutzwiller wave function. Off half-filling the results can be used to compare with Quantum Monte Carlo calculations of the effective hopping parameter. Contrary to the case of half-filling, the slave-boson approach is seen to greatly improve the results of the HFA when off half-filling. (Submitted to: Journal of Physics: Condensed Matter)Comment: 27 pages, LaTeX2e, 7 figures available upon request, INLO-PUB-10/9

    Dynamic effect of phase conjugation on wave localization

    Get PDF
    We investigate what would happen to the time dependence of a pulse reflected by a disordered single-mode waveguide, if it is closed at one end not by an ordinary mirror but by a phase-conjugating mirror. We find that the waveguide acts like a virtual cavity with resonance frequency equal to the working frequency omega_0 of the phase-conjugating mirror. The decay in time of the average power spectrum of the reflected pulse is delayed for frequencies near omega_0. In the presence of localization the resonance width is tau_s^{-1}exp(-L/l), with L the length of the waveguide, l the mean free path, and tau_s the scattering time. Inside this frequency range the decay of the average power spectrum is delayed up to times t simeq tau_s exp(L/l).Comment: 10 pages including 2 figure

    Spatiotemporally Localized Multidimensional Solitons in Self-Induced Transparency Media

    Get PDF
    "Light bullets" are multi-dimensional solitons which are localized in both space and time. We show that such solitons exist in two- and three-dimensional self-induced-transparency media and that they are fully stable. Our approximate analytical calculation, backed and verified by direct numerical simulations, yields the multi-dimensional generalization of the one-dimensional Sine-Gordon soliton.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Full text link
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    Random Scattering by Atomic Density Fluctuations in Optical Lattices

    Get PDF
    We investigate hitherto unexplored regimes of probe scattering by atoms trapped in optical lattices: weak scattering by effectively random atomic density distributions and multiple scattering by arbitrary atomic distributions. Both regimes are predicted to exhibit a universal semicircular scattering lineshape for large density fluctuations, which depend on temperature and quantum statistics.Comment: 4 pages, 2 figure
    • …
    corecore