39,944 research outputs found
Atrocalopteryx melli orohainani ssp. nov. on the Island of Hainan, China (Zygoptera: Calopterygidae)
The new sp. is described from the mountain core of Hainan, southern China, where it usually occurs at altitudes not lower than 300 m asl. It lives on the same type of small, shaded rivers as the nominate ssp. on the continent, and is distinguished by its larger size, slightly less enfumed wings, and a 2.6% difference in the sequence of the barcoding portion of the mitochodrial DNA-cytochrome c oxidase subunit I gene (COI). Holotype male: Diaoluoshan mountain, 6-VIII-2011; deposited in the Inst. Hydrobiol., Jinan Univ., Guanghou. It is argued that this geographically defined ssp. evolved because of persistent poor gene flow with continental populations, caused by the lowland "panhandle" between Hainan and the continent. This barrier was probably functioning equally well during interglacials (like at present) as during pleniglacials (when Hainan was connected to the mainland), because lack of suitable environments (small sized running waters), and dry and cold conditions continued to limit the contact with A. melli of the mainland
Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae
Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and
galactic chemical evolution. They are thought to be thermonuclear explosions of
carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar
mass limit in binaries. Previous studies have suggested that He novae may be
progenitor candidates of SNe Ia. However, the mass retention efficiencies
during He nova outbursts are still uncertain. In this article, we aim to study
the mass retention efficiencies of He nova outbursts and to investigate whether
SNe Ia can be produced through He nova outbursts. Using the stellar evolution
code Modules for Experiments in Stellar Astrophysics, we simulated a series of
multicycle He-layer flashes, in which the initial WD masses range from 0.7 to
1.35 Msun with various accretion rates. We obtained the mass retention
efficiencies of He nova outbursts for various initial WD masses, which can be
used in the binary population synthesis studies. In our simulations, He nova
outbursts can increase the mass of the WD to the Chandrasekar mass limit and
the explosive carbon burning can be triggered in the center of the WD; this
suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass
retention efficiencies in the present work are lower than those of previous
studies, which leads to a lower birthrates of SNe Ia through the WD + He star
channel. Furthermore, we obtained the elemental abundances distribution at the
moment of explosive carbon burning, which can be used as the initial input
parameters in studying explosion models of SNe Ia.Comment: 8 pages, 12 figures, 2 tables, published in Astronomy & Astrophysics
(A&A 604, A31, 2017
Birthrates and delay times of Type Ia supernovae
Type Ia supernovae (SNe Ia) play an important role in diverse areas of
astrophysics, from the chemical evolution of galaxies to observational
cosmology. However, the nature of the progenitors of SNe Ia is still unclear.
In this paper, according to a detailed binary population synthesis study, we
obtained SN Ia birthrates and delay times from different progenitor models, and
compared them with observations. We find that the Galactic SN Ia birthrate from
the double-degenerate (DD) model is close to those inferred from observations,
while the birthrate from the single-degenerate (SD) model accounts for only
about 1/2-2/3 of the observations. If a single starburst is assumed, the
distribution of the delay times of SNe Ia from the SD model is a weak
bimodality, where the WD + He channel contributes to the SNe Ia with delay
times shorter than 100Myr, and the WD + MS and WD + RG channels to those with
age longer than 1Gyr.Comment: 11 pages, 2 figures, accepted by Science in China Series G (Dec.30,
2009
Stellar adiabatic mass loss model and applications
Roche-lobe overflow and common envelope evolution are very important in
binary evolution, which is believed to be the main evolutionary channel to hot
subdwarf stars. The details of these processes are difficult to model, but
adiabatic expansion provides an excellent approximation to the structure of a
donor star undergoing dynamical time scale mass transfer. We can use this model
to study the responses of stars of various masses and evolutionary stages as
potential donor stars, with the urgent goal of obtaining more accurate
stability criteria for dynamical mass transfer in binary population synthesis
studies. As examples, we describe here several models with the initial masses
equal to 1 Msun and 10 Msun, and identify potential limitations to the use of
our results for giant-branch stars.Comment: 7 pages, 5 figures,Accepted for publication in AP&SS, Special issue
Hot Sub-dwarf Stars, in Han Z., Jeffery S., Podsiadlowski Ph. ed
Helium star evolutionary channel to super-Chandrasekhar mass type Ia supernovae
Recent discovery of several overluminous type Ia supernovae (SNe Ia)
indicates that the explosive masses of white dwarfs may significantly exceed
the canonical Chandrasekhar mass limit. Rapid differential rotation may support
these massive white dwarfs. Based on the single-degenerate scenario, and
assuming that the white dwarfs would differentially rotate when the accretion
rate , employing Eggleton's
stellar evolution code we have performed the numerical calculations for
1000 binary systems consisting of a He star and a CO white dwarf (WD). We
present the initial parameters in the orbital period - helium star mass plane
(for WD masses of and , respectively), which
lead to super-Chandrasekhar mass SNe Ia. Our results indicate that, for an
initial massive WD of , a large number of SNe Ia may result from
super-Chandrasekhar mass WDs, and the highest mass of the WD at the moment of
SNe Ia explosion is 1.81 , but very massive () WDs
cannot be formed. However, when the initial mass of WDs is , the
explosive masses of SNe Ia are nearly uniform, which is consistent with the
rareness of super-Chandrasekhar mass SNe Ia in observations.Comment: 6 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
An integrated wind risk warning model for urban rail transport in Shanghai, China
The integrated wind risk warning model for rail transport presented has four elements:
Background wind data, a wind field model, a vulnerability model, and a risk model. Background
wind data uses observations in this study. Using the wind field model with effective surface
roughness lengths, the background wind data are interpolated to a 30-m resolution grid. In the
vulnerability model, the aerodynamic characteristics of railway vehicles are analyzed with CFD
(Computational Fluid Dynamics) modelling. In the risk model, the maximum value of three
aerodynamic forces is used as the criteria to evaluate rail safety and to quantify the risk level under
extremely windy weather. The full model is tested for the Shanghai Metro Line 16 using wind
conditions during Typhoon Chan-hom. The proposed approach enables quick quantification of real-
time safety risk levels during typhoon landfall, providing sophisticated warning information for
rail vehicle operation safety
Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions
The identity of the progenitor systems of SNe Ia is still uncertain. In the
single-degenerate (SD) scenario, the interaction between the SN blast wave and
the outer layers of a main sequence (MS) companion star strips off H-rich
material which is then mixed into the ejecta. Strong contamination of the SN
ejecta with stripped material could lead to a conflict with observations of SNe
Ia. This constrains the SD progenitor model. In this work, our previous
simulations based on simplified progenitor donor stars have been updated by
adopting more realistic progenitor-system models that result from fully
detailed, state-of-the-art binary evolution calculations. We use Eggleton's
stellar evolution code including the optically thick accretion wind model and
the possibility of the effects of accretion disk instabilities to obtain
realistic models of companions for different progenitor systems. The impact of
the SN blast wave on these companion stars is followed in three-dimensional
hydrodynamic simulations employing the SPH code GADGET3. We find that the
stripped masses range from 0.11 to 0.18 M_sun. The kick velocity is between 51
and 105 km/s. We find that the stripped mass and kick velocity depend on the
ratio of the orbital separation to the radius of a companion. They can be
fitted by a power law for a given companion model. However, the structure of
the companion star is also important for the amount of stripped material. With
more realistic companion star models than in previous studies, our simulations
show that the H masses stripped from companions are inconsistent with the best
observational limits (< 0.01 M_sun) derived from nebular spectra. However, a
rigorous forward modeling based on impact simulations with radiation transfer
is required to reliably predict observable signatures of the stripped H and to
conclusively assess the viability of the considered SN Ia progenitor scenario.Comment: 14 pages, 13 figures, accepted for publication by A&
- …