30,526 research outputs found

    Effective generation of Ising interaction and cluster states in coupled microcavities

    Full text link
    We propose a scheme for realizing the Ising spin-spin interaction and atomic cluster states utilizing trapped atoms in coupled microcavities. It is shown that the atoms can interact with each other via the exchange of virtual photons of the cavities. Through suitably tuning the parameters, an effective Ising spin-spin interaction can be generated in this optical system, which is used to produce the cluster states. This scheme does not need the preparation of initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    A MapReduce Algorithm for Polygon Retrieval in Geospatial Analysis

    Get PDF
    The proliferation of data acquisition devices like 3D laser scanners had led to the burst of large-scale spatial terrain data which imposes many challenges to spatial data analysis and computation. With the advent of several emerging cloud technologies, a natural and cost-effective approach to managing such large-scale data is to store and process such datasets in a publicly hosted cloud service using modern distributed computing paradigms such as MapReduce. For several key spatial data analysis and computation problems, polygon retrieval is a fundamental operation which is often computed under real-time constraints. However, existing sequential algorithms fail to meet this demand effectively given that terrain data in recent years have witnessed an unprecedented growth in both volume and rate. In this work, we present a MapReduce-based parallel polygon retrieval algorithm which aims at minimizing the IO and CPU loads of the map and reduce tasks during spatial data processing. Our proposed algorithm first hierarchically indexes the spatial terrain data using a quad-tree index, with the help of which, a significant amount of data is filtered out in the pre-processing stage based on the query object. In addition, a prefix tree based on the quad-tree index is built to query the relationship between the terrain data and query area in real time which leads to significant savings in both I/O load and CPU time. The performance of the proposed techniques is evaluated in a Hadoop cluster and the results demonstrate that the proposed techniques are scalable and lead to more than 35% reduction in execution time of the polygon retrieval operation over existing distributed algorithms

    Astrometry via Close Approach Events: Applications to Main-Belt Asteroid (702) Alauda

    Full text link
    The release of Gaia catalog is revolutionary to the astronomy of solar system objects. After some effects such as atmospheric refraction and CCD geometric distortion have been taken into account, the astrometric precision for ground-based telescopes can reach the level of tens of milli-arcseconds. If an object approaches a reference star in a small relative angular distance (less than 100 arcseconds), which is called close approach event in this work, the relative positional precision between the object and reference star will be further improved since the systematic effects of atmospheric turbulence and local telescope optics can be reduced. To obtain the precise position of a main-belt asteroid in an close approach event, a second-order angular velocity model with time is supposed in the sky plane. By fitting the relationship between the relative angular distance and observed time, we can derive the time of maximum approximation and calculate the corresponding position of the asteroid. In practice, 5 nights' CCD observations including 15 close approach events of main-belt asteroid (702) Alauda are taken for testing by the 1m telescope at Yunnan Observatory, China. Compared with conventional solutions, our results show that the positional precision significantly improves, which reaches better than 4 milli-arcseconds, and 1 milli-arcsecond in the best case when referenced for JPL ephemeris in both right ascension and declination.Comment: 11 pages, 22 figure

    A robust controlling methodology for a grouting process

    Get PDF
    The grouting technology is an effective and economic method in the grouting industry field. In this paper, a nonlinear model for the grouting dynamic process was established, and the controlling parameters were further modified through a robust method. Moreover, the grouting pressure system for the neural network was also modelled based on a sensitivity analysis algorithm, and in particular, the iterative learning algorithm and Lyapunov asymptotical theory. The results showed that such a robust controlling methodology was better than the normal manual operation method. The subsequent numerical simulations demonstrated that the tuning methodology could meet all the requirements for the grouting control with the maximum pressure variable in the range of 8.1%. The present study and the proposed method could be applied to various engineering projects and especially, to implement in the real control of damming grouting
    • …
    corecore