45,446 research outputs found

    Ion specificity and the theory of stability of colloidal suspensions

    Full text link
    A theory is presented which allow us to accurately calculate the critical coagulation concentration (CCC) of hydrophobic colloidal suspensions. For positively charged particles the CCC's follow the Hofmeister (lyotropic) series. For negatively charged particles the series is reversed. We find that strongly polarizable chaotropic anions are driven towards the colloidal surface by electrostatic and hydrophobic forces. Within approximately one ionic radius from the surface, the chaotropic anions loose part of their hydration sheath and become strongly adsorbed. The kosmotropic anions, on the other hand, are repelled from the hydrophobic surface. The theory is quantitatively accurate without any adjustable parameters. We speculate that the same mechanism is responsible for the Hofmeister series that governs stability of protein solutions.Comment: Phys. Rev. Lett. (in press

    Euler equation of the optimal trajectory for the fastest magnetization reversal of nano-magnetic structures

    Full text link
    Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary Stoner particle under an external magnetic field and a spin-polarized electric current, differential equations for the optimal reversal trajectory, along which the magnetization reversal is the fastest one among all possible reversal routes, are obtained. We show that this is a Euler-Lagrange problem with constrains. The Euler equation of the optimal trajectory is useful in designing a magnetic field pulse and/or a polarized electric current pulse in magnetization reversal for two reasons. 1) It is straightforward to obtain the solution of the Euler equation, at least numerically, for a given magnetic nano-structure characterized by its magnetic anisotropy energy. 2) After obtaining the optimal reversal trajectory for a given magnetic nano-structure, finding a proper field/current pulse is an algebraic problem instead of the original nonlinear differential equation

    Optical Spectroscopy of K-selected Extremely Red Galaxies

    Full text link
    We have obtained spectroscopic redshifts for 24 red galaxies from a sample with median Ks=18.7 and F814W - Ks > 4, using the Keck telescope. These EROshave high resolution morphologies from HST (Yan & Thompson 2003). Among the 24 redshifts, the majority (92%) are at 0.9<z<1.5 0.9 < z < 1.5. We derived the rest-frame J-band luminosity function at zmedian=1.14z_{median} =1.14. Our result suggests that the luminosity evolution between bright EROs at z∼1z\sim 1 and the present-day >>L∗^* massive galaxies is at most about 0.7 magnitude. Combining the morphologies and deep spectroscopy revealed the following properties: (1) 86% of the spectra have absorption features from old stars, suggesting that the dominant stellar populations seen in the rest-frame UV are old stars. 50% of the sources have pure absorption lines, while the remaining 50% have emission lines, indicating recent star formation. We conclude that the color criterion for EROs is very effective in selecting old stellar populations at z∼1z \sim 1, and a large fraction of these systems with prominent old stellar populations also have recent star formation. (2) The 12 emission line systems have the same number of disk and bulge galaxies as in the remaining 12 pure absorption line systems. We conclude that spectral classes do not have a simple, direct correspondence with morphological types. (3) Three EROs could be isolated, pure passively evolving early-type galaxies at z∼1z\sim 1. This implies that only a small fraction (10%--15%) of early-type galaxies are formed in a rapid burst of star formation at high redshifts and evolved passively since then. (Abridged).Comment: 27 pages, 8 figures. Accepted for publication in Astronomical Journal, issue March 200

    Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2 - (5s4d)3D2 transition

    Full text link
    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2 - (5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr, and 88Sr improves the value of the (5s5p)3P2 - (5s4d)3D2 transition frequency for 88Sr and determines the isotope shifts for the transition.Comment: 4 pages, 5 figure
    • …
    corecore