17,053 research outputs found
Pilot interaction with automated airborne decision making systems
The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed
Pilot interaction with automated airborne decision making systems
Two project areas were pursued: the intelligent cockpit and human problem solving. The first area involves an investigation of the use of advanced software engineering methods to aid aircraft crews in procedure selection and execution. The second area is focused on human problem solving in dynamic environments, particulary in terms of identification of rule-based models land alternative approaches to training and aiding. Progress in each area is discussed
Effective Action of QED in Electric Field Backgrounds II: Spatially Localized Fields
We find the Bogoliubov coefficient from the tunneling boundary condition on a
charged particle coupled to a static electric field and,
using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the
exact one-loop effective action in scalar and spinor QED. It is shown that the
effective action satisfies the general relation between the vacuum persistence
and the mean number of produced pairs. We advance an approximation method for
general electric fields and show the duality between the space-dependent and
time-dependent electric fields of the same form at the leading order of the
effective actions.Comment: RevTex 7 pages, no figure; extension of arXiv:0807.2696 to
space-dependent electric fields; new section added on approximate effective
actions in general electric fields and conclusion shortened; references
added; replaced by the version to be published in Phys. Rev.
Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs
We generalize the belief-propagation algorithm to sparse random networks with
arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in
these networks belongs to a given set of motifs (generalization of the
configuration model). These networks can be treated as sparse uncorrelated
hypergraphs in which hyperedges represent motifs. Here a hypergraph is a
generalization of a graph, where a hyperedge can connect any number of
vertices. These uncorrelated hypergraphs are tree-like (hypertrees), which
crucially simplify the problem and allow us to apply the belief-propagation
algorithm to these loopy networks with arbitrary motifs. As natural examples,
we consider motifs in the form of finite loops and cliques. We apply the
belief-propagation algorithm to the ferromagnetic Ising model on the resulting
random networks. We obtain an exact solution of this model on networks with
finite loops or cliques as motifs. We find an exact critical temperature of the
ferromagnetic phase transition and demonstrate that with increasing the
clustering coefficient and the loop size, the critical temperature increases
compared to ordinary tree-like complex networks. Our solution also gives the
birth point of the giant connected component in these loopy networks.Comment: 9 pages, 4 figure
Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO
We discuss the properties of semiconducting bulk ZnO when substituted with
the magnetic transition metal ions Mn and Co, with substituent fraction ranging
from = 0.02 to = 0.15. The magnetic properties were measured as a
function of magnetic field and temperature and we find no evidence for magnetic
ordering in these systems down to = 2 K. The magnetization can be fit by
the sum of a Curie-Weiss term with a Weiss temperature of 100 K and
a Curie term. We attribute this behavior to contributions from both \textit{t}M
ions with \textit{t}M nearest neighbors and from isolated spins. This
particular functional form for the susceptibility is used to explain why no
ordering is observed in \textit{t}M substituted ZnO samples despite the large
values of the Weiss temperature. We also discuss in detail the methods we used
to minimize any impurity contributions to the magnetic signal.Comment: 6 pages, 4 figures (revised
Resonance Damping in Ferromagnets and Ferroelectrics
The phenomenological equations of motion for the relaxation of ordered phases
of magnetized and polarized crystal phases can be developed in close analogy
with one another. For the case of magnetized systems, the driving magnetic
field intensity toward relaxation was developed by Gilbert. For the case of
polarized systems, the driving electric field intensity toward relaxation was
developed by Khalatnikov. The transport times for relaxation into thermal
equilibrium can be attributed to viscous sound wave damping via
magnetostriction for the magnetic case and electrostriction for the
polarization case.Comment: 5 pages no figures ReVTeX
Hyperpolarizability and operational magic wavelength in an optical lattice clock
Optical clocks benefit from tight atomic confinement enabling extended
interrogation times as well as Doppler- and recoil-free operation. However,
these benefits come at the cost of frequency shifts that, if not properly
controlled, may degrade clock accuracy. Numerous theoretical studies have
predicted optical lattice clock frequency shifts that scale nonlinearly with
trap depth. To experimentally observe and constrain these shifts in an
Yb optical lattice clock, we construct a lattice enhancement cavity
that exaggerates the light shifts. We observe an atomic temperature that is
proportional to the optical trap depth, fundamentally altering the scaling of
trap-induced light shifts and simplifying their parametrization. We identify an
"operational" magic wavelength where frequency shifts are insensitive to
changes in trap depth. These measurements and scaling analysis constitute an
essential systematic characterization for clock operation at the
level and beyond.Comment: 5 + 2 pages, 3 figures, added supplementa
Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order
Angle resolved photoemission (ARPES) data from the electron doped cuprate
superconductor SmCeCuO shows a much stronger pseudo-gap
or "hot-spot" effect than that observed in other optimally doped -type
cuprates. Importantly, these effects are strong enough to drive the
zone-diagonal states below the chemical potential, implying that d-wave
superconductivity in this compound would be of a novel "nodeless" gap variety.
The gross features of the Fermi surface topology and low energy electronic
structure are found to be well described by reconstruction of bands by a
order. Comparison of the ARPES and optical data from
the sample shows that the pseudo-gap energy observed in optical data is
consistent with the inter-band transition energy of the model, allowing us to
have a unified picture of pseudo-gap effects. However, the high energy
electronic structure is found to be inconsistent with such a scenario. We show
that a number of these model inconsistencies can be resolved by considering a
short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure
Wigner crystallization in a polarizable medium
We present a variational study of the 2D and 3D Wigner crystal phase of large
polarons. The method generalizes that introduced by S. Fratini,P.\
Qu{\'{e}}merais [Mod. Phys. Lett. B {\bf 12} 1003 (1998)]. We take into account
the Wigner crystal normal modes rather than a single mean frequency in the
minimization procedure of the variational free energy. We calculate the
renormalized modes of the crystal as well as the charge polarization
correlation function and polaron radius. The solid phase boundaries are
determined via a Lindemann criterion, suitably generalized to take into account
the classical-to-quantum cross-over.
In the weak electron-phonon coupling limit, the Wigner crystal parameters are
renormalized by the electron-phonon interaction leading to a stabilization of
the solid phase for low polarizability of the medium. Conversely, at
intermediate and strong coupling, the behavior of the system depends strongly
on the polarizability of the medium.
For weakly polarizable media, a density crossover occurs inside the solid
phase when the renormalized plasma frequency approaches the phonon frequency.
At low density, we have a renormalized polaron Wigner crystal, while at higher
densities the electron-phonon interaction is weakened irrespective of the {\it
bare} electron-phonon coupling.
For strongly polarizable media, the system behaves as a Lorentz lattice of
dipoles. The abrupt softening of the internal polaronic frequency predicted by
Fratini and Quemerais is observed near the actual melting point only at very
strong coupling, leading to a possible liquid polaronic phase for a wider range
of parameters.Comment: 24 pages, 13 figures v1.
- …