90 research outputs found

    Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    Get PDF
    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.United States. Dept. of Energy. Office of Basic Energy Sciences (DE-FG02-07ER46454)United States. Dept. of Energy. Office of Basic Energy Sciences (DE-SC0001088)National Institutes of Health (U.S.) (9P41EB015871-26A1

    Point-contact spectra of the heavy-fermion superconductors U Be

    Get PDF
    We have measured the current-voltage characteristics of point contacts between UBe13 or UPt3 and the normal metals W or Pt (metallic point contacts) or GaAs (Schottky-barrier tunneling contact) in the temperature range between 50 mK and 1 K. In the metal-point-contact characteristics (dVdI vs V) there appear zero-bias minima of width 2 below Tc. The ratio 2 kBTc is close to the BCS value. The tunneling spectra of UPt3 exhibit weak additional structure below Tc. A value 2 has been estimated, which is a factor of 2 larger than that for the metal point contacts. © 1987 The American Physical Society

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Results of the second national forest soil inventory in Germany - Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type.

    No full text
    Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were detected in 86 humic topsoil layers and in a subset of 11 randomly selected top mineral forest soils at the depths of 0–5 cm and 5–10 cm collected from different federal states of Germany. The distribution of these persistent organic pollutants (POPs) in humic topsoils with respect to vegetation cover (coniferous vs. deciduous vs. mixed), total organic carbon (TOC), altitude and latitude data was investigated. There is cross correlation between the contents and TOC while the correlation with latitude indicates higher abundances of POPs in central Germany where there is high population density accompanied with industrial activities. The calculated stocks suggest that humus type (mor, mull, or moder) in conjunction with forest type can explain the relative POPs abundances in different soil layers. Generally, humic topsoils show highest contents of POPs compare to the two mineral soils with a ratio of 100:10:1. However, the stock humic layers of coniferous stands contribute about 50% to the total stock, whereas at deciduous stands the stock is mainly located in the upper mineral soil layer (0–5 cm). The soil-water distribution coefficients (Kd) were calculated to estimate the potential translocation in the different soil types. The Kd values vary among the PCBs and PCDD/Fs congeners and are most variable for humic topsoils. There is pronounced chemical abundance in the top mineral soils with increasing Kd and this points to non-water bound transport processes for superlipophilic compounds

    Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils.

    No full text
    Endosulfan - an agricultural insecticide and banned by Stockholm Convention - is produced as a 2:1 to 7:3 mixture of isomers endosulfan I (ESI) and endosulfan II (ESII). Endosulfan is transformed under aerobic conditions into endosulfan sulfate (ESS). The study shows for 76 sampling locations in German forests that endosulfan is abundant in all samples with an opposite ratio between the ESI and ESII than the technical product, where the main metabolite ESS is found with even higher abundance. The ratio between ESI/ESII and ESS show clear dependence on the type of stands (coniferous vs. deciduous) and humus type and increases from deciduous via mixed to coniferous forest stands. The study argues for a systematic monitoring of ESI, ESII, and ESS and underlines the need for further research, specifically on the fate of endosulfan including biomagnifications and bioaccumulation in soil

    The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany.

    No full text
    The occurrence of bromocarbazoles and chlorocarbazoles was studied in 86 forest soil samples from different regions in Germany. Carbazole, 3-chlorocarbazole, 3-bromocarbazole and 3,6-dibromocarbazole were qualitatively detected in the humic layer of 59 soil samples with bromocarbazoles reported here for the first time in soil. Furthermore, the halogenated carbazoles, PCDD/Fs and PCBs were detected in the humic and mineral soil horizons (0-5 cm and 5-10 cm) of a subset of 11 soil samples subjected to quantitative analysis. Concentrations ranged from 0.6 to 267.6 ng/g (carbazole); 0.2-7.2 ng/g (3-bromocarbazole); 0.0-9.1 ng/g (3-chlorocarbazole); 0.2-19.8 ng/g (3,6-dibromocarbazole); 0.4-67.6 ng/g (3,6-dichlorocarbazole); 0.0-0.7 ng/g (PCDDs); 0.0-0.3 ng/g (PCDFs) and 0.0-33.7 ng/g (PCBs). Concentrations decreased with depth and correlated positively to total organic carbon (TOC). When it was based on TOC%, an increase in concentration with depth was observed in most soil samples. With respect to dioxin-like toxicity, 3-bromocarbazole, 3-chlorocarbazole, 3,6-dibromocarbazole and 3,6-dichlorocarbazoles caused induction of CYP1A1-dependent EROD activity in HII4E rat hepatoma cell line. Their relative effect potency after 72 h exposure ranged from 0.00005 to 0.00013 and was directly related to the degree of halogenation with 2,3,7,8-tetrachlorodibenzo-p-dioxin as reference. Furthermore, their contribution to overall soil dioxin-like toxicity was not significant in comparison to PCDD/Fs and PCBs though the sum toxic equivalency was limited to three halogenated carbazole congeners. Bromocarbazoles and chlorocarbazoles are emerging dioxin-like toxic environmental contaminants with potential for wide distribution occurring simultaneously with PCDD/Fs and PCBs

    Comparative study of dioxin contamination from forest soil samples (BZE II) by mass spectrometry and EROD bioassay.

    No full text
    Dioxins and dioxin-like compounds can be analyzed by bioanalytical screening methods to evaluate their biotoxicity. In vitro bioassays, based on 7-ethoxyresorufin-O-deethylase (EROD) and the activity of cytochrome P450 1A1 and the aryl hydrogen receptor (AhR) pathway, are employed for the evaluation of bioanalytical equivalents (BEQ) of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) from a wide variety of sample matrices. Here, we present the evaluation of 11 humic soil samples derived from forest stands across Germany and a comparison of the BEQ values against toxic equivalents (TEQ, PCDD/Fs+PCBs) derived by chemical analysis. BEQ values ranged from 8.8 to 34.1 while TEQ values from 13.9 to 60.5 pg/g dry weight. Additional two subsequent mineral layers were analyzed to identify the BEQ/TEQ gradient vertically, showing a TEQ decrease of 85.1 and 93.8 % from the humic to the first and second mineral layers, respectively. For BEQ values, a decrease as well as an increase was detected. BEQ measurements were performed with and without sample clean-up. Omitting clean-up revealed about 20 times increased BEQ values presumably due to non-persistent bioactive compounds not detected by chemical analysis. The results we present suggest that the EROD assay can be used for the screening of large sample quantities for the identification of samples showing dioxin and dioxin-like contaminations even at low levels, which can then be further analyzed by chemical analysis to identify the congener composition. The study also shows that EROD results give a qualitative image of the contamination. EROD seems to be interfered with cross-contaminants specifically for soils with high biological activity as forest layers
    corecore