1,095 research outputs found

    Yang-Mills, Complex Structures and Chern's Last Theorem

    Full text link
    Recently Shiing-Shen Chern suggested that the six dimensional sphere S6\mathbb{S}^6 has no complex structure. Here we explore the relations between his arguments and Yang-Mills theories. In particular, we propose that Chern's approach is widely applicable to investigate connections between the geometry of manifolds and the structure of gauge theories. We also discuss several examples of manifolds, both with and without a complex structure.Comment: Chern's proof remains incomplete, and we have edited some statements in our article accordingl

    The Discrete Frenet Frame, Inflection Point Solitons And Curve Visualization with Applications to Folded Proteins

    Full text link
    We develop a transfer matrix formalism to visualize the framing of discrete piecewise linear curves in three dimensional space. Our approach is based on the concept of an intrinsically discrete curve, which enables us to more effectively describe curves that in the limit where the length of line segments vanishes approach fractal structures in lieu of continuous curves. We verify that in the case of differentiable curves the continuum limit of our discrete equation does reproduce the generalized Frenet equation. As an application we consider folded proteins, their Hausdorff dimension is known to be fractal. We explain how to employ the orientation of CβC_\beta carbons of amino acids along a protein backbone to introduce a preferred framing along the backbone. By analyzing the experimentally resolved fold geometries in the Protein Data Bank we observe that this CβC_\beta framing relates intimately to the discrete Frenet framing. We also explain how inflection points can be located in the loops, and clarify their distinctive r\^ole in determining the loop structure of foldel proteins.Comment: 14 pages 12 figure

    Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    Get PDF
    We calculate the intershell resistance R_{21} in a multiwall carbon nanotube as a function of temperature T and Fermi level (e.g. a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I_1 in one shell induces a voltage drop V_2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunnelling. We provide benchmark results for R_{21}=V_2/I_1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality dependent suppression effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R_{21} and even the sign of R_{21} can change depending on the chirality of the inner and outer tube and misalignment of inner and outer tube Fermi levels. However for any tube combination, we predict a dip (or peak) in R_{21} as a function of gate voltage, since R_{21} vanishes at the electron-hole symmetry point. As a byproduct, we classified all metallic tubes into either zigzag-like or armchair-like, which have two different non-zero crystal angular momenta m_a, m_b and only zero angular momentum, respectively.Comment: 17 pages, 10 figure

    Critical Networks Exhibit Maximal Information Diversity in Structure-Dynamics Relationships

    Full text link
    Network structure strongly constrains the range of dynamic behaviors available to a complex system. These system dynamics can be classified based on their response to perturbations over time into two distinct regimes, ordered or chaotic, separated by a critical phase transition. Numerous studies have shown that the most complex dynamics arise near the critical regime. Here we use an information theoretic approach to study structure-dynamics relationships within a unified framework and how that these relationships are most diverse in the critical regime

    Weisskopf-Wigner model for wave packet excitation

    Get PDF
    We consider a laser induced molecular excitation process as a decay of a single energy state into a continuum. The analytic results based on Weisskopf-Wigner approach and perturbation calculations are compared with numerical wave packet results. We find that the decay model describes the excitation process well within the expected parameter region.Comment: 14 pages, Latex2.09, 9 Postscript figures embedded using psfig, see also http://www.physics.helsinki.fi/~kasuomin

    On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction

    Full text link
    In the mean-field limit the dynamics of a quantum Bose gas is described by a Hartree equation. We present a simple method for proving the convergence of the microscopic quantum dynamics to the Hartree dynamics when the number of particles becomes large and the strength of the two-body potential tends to 0 like the inverse of the particle number. Our method is applicable for a class of singular interaction potentials including the Coulomb potential. We prove and state our main result for the Heisenberg-picture dynamics of "observables", thus avoiding the use of coherent states. Our formulation shows that the mean-field limit is a "semi-classical" limit.Comment: Corrected typos and included an elementary proof of the Kato smoothing estimate (Lemma 6.1

    Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices

    Full text link
    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time-dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model, and the properties of the solutions are analyzed. An expression for the current is obtained. Finally, Zener-tunneling in a two-band tight-binding model is considered. The present work gives the background and an extension of the theoretical framework underlying our recent Letter [J. Rotvig {\it et al.}, Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache

    Vortex nucleation in Bose-Einstein condensates in time-dependent traps

    Full text link
    Vortex nucleation in a Bose-Einstein condensate subject to a stirring potential is studied numerically using the zero-temperature, two-dimensional Gross-Pitaevskii equation. It is found that this theory is able to describe the creation of vortices, but not the crystallization of a vortex lattice. In the case of a rotating, slightly anisotropic harmonic potential, the numerical results reproduce experimental findings, thereby showing that finite temperatures are not necessary for vortex excitation below the quadrupole frequency. In the case of a condensate subject to stirring by a narrow rotating potential, the process of vortex excitation is described by a classical model that treats the multitude of vortices created by the stirrer as a continuously distributed vorticity at the center of the cloud, but retains a potential flow pattern at large distances from the center.Comment: 22 pages, 7 figures. Changes after referee report: one new figure, new refs. No conclusions altere

    Bloch oscillations, Zener tunneling and Wannier-Stark ladders in the time-domain

    Get PDF
    We present a time-domain analysis of carrier dynamics in a semiconductor superlattice with two minibands. Integration of the density-matrix equations of motion reveals a number of new features: (i) for certain values of the applied static electric field strong interband transitions occur; (ii) in static fields the complex time-dependence of the density-matrix displays a sequence of stable plateaus in the low field regime, and (iii) for applied fields with a periodic time-dependence the dynamic response can be understood in terms of the quasienergy spectra.Comment: 4 pages, 6 PostScript figures available from [email protected], REVTEX 3.

    Atom optical elements for Bose condensates

    Full text link
    A simple model for atom optical elements for Bose condensate of trapped, dilute alkali atomns is proposed and numerical simulations are presented to illustrate its characteristics. We demonstrate ways of focusing and splitting the condensate by modifying experimentally adjustable parameters. We show that there are at least two ways of implementing atom optical elements: one may modulate the interatomic scattering length in space, or alternatively, use a sinusoidal, externally applied potential.Comment: 7 pages, 10 figure
    • …
    corecore