1,207 research outputs found

    Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition

    Full text link
    The one-dimensional totally asymmetric simple exclusion process (TASEP) is considered. We study the time evolution property of a tagged particle in TASEP with the step-type initial condition. Calculated is the multi-time joint distribution function of its position. Using the relation of the dynamics of TASEP to the Schur process, we show that the function is represented as the Fredholm determinant. We also study the scaling limit. The universality of the largest eigenvalue in the random matrix theory is realized in the limit. When the hopping rates of all particles are the same, it is found that the joint distribution function converges to that of the Airy process after the time at which the particle begins to move. On the other hand, when there are several particles with small hopping rate in front of a tagged particle, the limiting process changes at a certain time from the Airy process to the process of the largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure

    Edge scaling limits for a family of non-Hermitian random matrix ensembles

    Full text link
    A family of random matrix ensembles interpolating between the GUE and the Ginibre ensemble of n×nn\times n matrices with iid centered complex Gaussian entries is considered. The asymptotic spectral distribution in these models is uniform in an ellipse in the complex plane, which collapses to an interval of the real line as the degree of non-Hermiticity diminishes. Scaling limit theorems are proven for the eigenvalue point process at the rightmost edge of the spectrum, and it is shown that a non-trivial transition occurs between Poisson and Airy point process statistics when the ratio of the axes of the supporting ellipse is of order n1/3n^{-1/3}. In this regime, the family of limiting probability distributions of the maximum of the real parts of the eigenvalues interpolates between the Gumbel and Tracy-Widom distributions.Comment: 44 page

    Expected length of the longest common subsequence for large alphabets

    Full text link
    We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that the expected value of L, when normalized by n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe

    On the partial connection between random matrices and interacting particle systems

    Full text link
    In the last decade there has been increasing interest in the fields of random matrices, interacting particle systems, stochastic growth models, and the connections between these areas. For instance, several objects appearing in the limit of large matrices arise also in the long time limit for interacting particles and growth models. Examples of these are the famous Tracy-Widom distribution functions and the Airy_2 process. The link is however sometimes fragile. For example, the connection between the eigenvalues in the Gaussian Orthogonal Ensembles (GOE) and growth on a flat substrate is restricted to one-point distribution, and the connection breaks down if we consider the joint distributions. In this paper we first discuss known relations between random matrices and the asymmetric exclusion process (and a 2+1 dimensional extension). Then, we show that the correlation functions of the eigenvalues of the matrix minors for beta=2 Dyson's Brownian motion have, when restricted to increasing times and decreasing matrix dimensions, the same correlation kernel as in the 2+1 dimensional interacting particle system under diffusion scaling limit. Finally, we analyze the analogous question for a diffusion on (complex) sample covariance matrices.Comment: 31 pages, LaTeX; Added a section concerning the Markov property on space-like path

    Replica field theories, Painleve transcendents, and exact correlation functions

    Full text link
    Exact solvability is claimed for nonlinear replica sigma models derived in the context of random matrix theories. Contrary to other approaches reported in the literature, the framework outlined does not rely on traditional "replica symmetry breaking" but rests on a previously unnoticed exact relation between replica partition functions and Painleve transcendents. While expected to be applicable to matrix models of arbitrary symmetries, the method is used to treat fermionic replicas for the Gaussian unitary ensemble (GUE), chiral GUE (symmetry classes A and AIII in Cartan classification) and Ginibre's ensemble of complex non-Hermitean random matrices. Further applications are briefly discussed.Comment: published version, 4 pages, revtex

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems

    Strong asymptotics for Jacobi polynomials with varying nonstandard parameters

    Get PDF
    Strong asymptotics on the whole complex plane of a sequence of monic Jacobi polynomials Pn(αn,βn)P_n^{(\alpha_n, \beta_n)} is studied, assuming that limnαnn=A,limnβnn=B, \lim_{n\to\infty} \frac{\alpha_n}{n}=A, \qquad \lim_{n\to\infty} \frac{\beta _n}{n}=B, with AA and BB satisfying A>1 A > -1, B>1 B>-1, A+B<1A+B < -1. The asymptotic analysis is based on the non-Hermitian orthogonality of these polynomials, and uses the Deift/Zhou steepest descent analysis for matrix Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived. We show that in a generic case the zeros distribute on the set of critical trajectories Γ\Gamma of a certain quadratic differential according to the equilibrium measure on Γ\Gamma in an external field. However, when either αn\alpha_n, βn\beta_n or αn+βn\alpha_n+\beta_n are geometrically close to Z\Z, part of the zeros accumulate along a different trajectory of the same quadratic differential.Comment: 31 pages, 12 figures. Some references added. To appear in Journal D'Analyse Mathematiqu

    Last passage percolation and traveling fronts

    Get PDF
    We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida. The particles can be interpreted as last passage times in directed percolation on {1,...,N} of mean-field type. The particles remain grouped and move like a traveling wave, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. The Gumbel distribution plays a central role for the particle jumps, and we show that the scaling limit is a L\'evy process in this case. The case of bounded jumps yields a completely different behavior

    Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices

    Full text link
    We develop a scaling theory for KPZ growth in one dimension by a detailed study of the polynuclear growth (PNG) model. In particular, we identify three universal distributions for shape fluctuations and their dependence on the macroscopic shape. These distribution functions are computed using the partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for publication in PR

    From Vicious Walkers to TASEP

    Get PDF
    We propose a model of semi-vicious walkers, which interpolates between the totally asymmetric simple exclusion process and the vicious walkers model, having the two as limiting cases. For this model we calculate the asymptotics of the survival probability for mm particles and obtain a scaling function, which describes the transition from one limiting case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the result as the particle current generating function in the totally asymmetric simple exclusion process. Thus we obtain the particle current distribution asymptotically in the large time limit as the number of particles is fixed. The results apply to the large deviation scale as well as to the diffusive scale. In the latter we obtain a new universal distribution, which has a skew non-Gaussian form. For mm particles its asymptotic behavior is shown to be ey22m2e^{-\frac{y^{2}}{2m^{2}}} as yy\to -\infty and ey22mym(m1)2e^{-\frac{y^{2}}{2m}}y^{-\frac{m(m-1)}{2}} as yy\to \infty .Comment: 37 pages, 4 figures, Corrected reference
    corecore