49,449 research outputs found
On the tau-functions of the Degasperis-Procesi equation
The DP equation is investigated from the point of view of
determinant-pfaffian identities. The reciprocal link between the
Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the
two-dimensional Toda system is used to construct the N-soliton solution of the
DP equation. The N-soliton solution of the DP equation is presented in the form
of pfaffian through a hodograph (reciprocal) transformation. The bilinear
equations, the identities between determinants and pfaffians, and the
-functions of the DP equation are obtained from the pseudo 3-reduction of
the two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and
Theoretical, to be publishe
Recommended from our members
Operando STM study of the interaction of imidazolium-based ionic liquid with graphite
Understanding interactions at the interfaces of carbon with ionic liquids (ILs) is crucially beneficial for the diagnostics and performance improvement of electrochemical devices containing carbon as active materials or conductive additives in electrodes and ILs as solvents or additives in electrolytes. The interfacial interactions of three typical imidazolium-based ILs, 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (AMImTFSI) ILs having ethyl (C2), butyl (C4) and octyl (C8) chains in their cations, with highly oriented pyrolytic graphite (HOPG) were studied in-situ by electrochemical scanning tunneling microscopy (EC-STM). The etching of HOPG surface and the exfoliation of graphite/graphene flakes as well as cation intercalation were observed at the HOPG/C2MImTFSI interface. The etching also takes place in C4MImTFSI at −1.5 V vs Pt but only at step edges with a much slower rate, whereas C8MIm+ cations adsorbs strongly on the HOPG surface under similar conditions with no observable etching or intercalation. The EC-STM observations can be explained by the increase in van der Waals interaction between the cations and the graphite surface with increasing length of alkyl chains
Superstructure-induced splitting of Dirac cones in silicene
Atomic scale engineering of two-dimensional materials could create devices
with rich physical and chemical properties. External periodic potentials can
enable the manipulation of the electronic band structures of materials. A
prototypical system is 3x3-silicene/Ag(111), which has substrate-induced
periodic modulations. Recent angle-resolved photoemission spectroscopy
measurements revealed six Dirac cone pairs at the Brillouin zone boundary of
Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113,
14656 (2016)]. We used linear dichroism angle-resolved photoemission
spectroscopy, the tight-binding model, and first-principles calculations to
reveal that these Dirac cones mainly derive from the original cones at the K
(K') points of free-standing silicene. The Dirac cones of free-standing
silicene are split by external periodic potentials that originate from the
substrate-overlayer interaction. Our results not only confirm the origin of the
Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful
route to manipulate the electronic structures of two-dimensional materials.Comment: 6 pages, 3 figure
Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax
We propose a new setup to measure an electrical field in one direction. This
setup is made of a piezoelectric sintered lead zinconate titanate film and an
optical interferometric probe. We used this setup to investigate how the shape
of the extremity of a coaxial cable influences the longitudinal electrical
near-field generated by it. For this application, we designed our setup to have
a spatial resolution of 100 um in the direction of the electrical field.
Simulations and experiments are presented
Parametric study of cavity length and mirror reflectivity in ultralow threshold quantum well InGaAs/AlGaAs lasers
Record low CW threshold currents of 16 μA at-room temperature and 21 μA at cryogenic temperature have been demonstrated in buried heterostructure strained layer, single quantum well InGaAs/AlGaAs lasers with a short cavity length and high reflectivity coatings
Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition
Product reviews and ratings on e-commerce websites provide customers with
detailed insights about various aspects of the product such as quality,
usefulness, etc. Since they influence customers' buying decisions, product
reviews have become a fertile ground for abuse by sellers (colluding with
reviewers) to promote their own products or to tarnish the reputation of
competitor's products. In this paper, our focus is on detecting such abusive
entities (both sellers and reviewers) by applying tensor decomposition on the
product reviews data. While tensor decomposition is mostly unsupervised, we
formulate our problem as a semi-supervised binary multi-target tensor
decomposition, to take advantage of currently known abusive entities. We
empirically show that our multi-target semi-supervised model achieves higher
precision and recall in detecting abusive entities as compared to unsupervised
techniques. Finally, we show that our proposed stochastic partial natural
gradient inference for our model empirically achieves faster convergence than
stochastic gradient and Online-EM with sufficient statistics.Comment: Accepted to the 25th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2019. Contains supplementary material. arXiv admin note: text
overlap with arXiv:1804.0383
A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment
Face analysis techniques have become a crucial component of human-machine
interaction in the fields of assistive and humanoid robotics. However, the
variations in head-pose that arise naturally in these environments are still a
great challenge. In this paper, we present a real-time capable 3D face
modelling framework for 2D in-the-wild images that is applicable for robotics.
The fitting of the 3D Morphable Model is based exclusively on automatically
detected landmarks. After fitting, the face can be corrected in pose and
transformed back to a frontal 2D representation that is more suitable for face
recognition. We conduct face recognition experiments with non-frontal images
from the MUCT database and uncontrolled, in the wild images from the PaSC
database, the most challenging face recognition database to date, showing an
improved performance. Finally, we present our SCITOS G5 robot system, which
incorporates our framework as a means of image pre-processing for face
analysis
On Dimer Models and Closed String Theories
We study some aspects of the recently discovered connection between dimer
models and D-brane gauge theories. We argue that dimer models are also
naturally related to closed string theories on non compact orbifolds of \BC^2
and \BC^3, via their twisted sector R charges, and show that perfect
matchings in dimer models correspond to twisted sector states in the closed
string theory. We also use this formalism to study the combinatorics of some
unstable orbifolds of \BC^2.Comment: 1 + 25 pages, LaTeX, 11 epsf figure
- …