6,671 research outputs found

    SenseCam image localisation using hierarchical SURF trees

    Get PDF
    The SenseCam is a wearable camera that automatically takes photos of the wearer's activities, generating thousands of images per day. Automatically organising these images for efficient search and retrieval is a challenging task, but can be simplified by providing semantic information with each photo, such as the wearer's location during capture time. We propose a method for automatically determining the wearer's location using an annotated image database, described using SURF interest point descriptors. We show that SURF out-performs SIFT in matching SenseCam images and that matching can be done efficiently using hierarchical trees of SURF descriptors. Additionally, by re-ranking the top images using bi-directional SURF matches, location matching performance is improved further

    Towards learning free naive bayes nearest neighbor-based domain adaptation

    Get PDF
    As of today, object categorization algorithms are not able to achieve the level of robustness and generality necessary to work reliably in the real world. Even the most powerful convolutional neural network we can train fails to perform satisfactorily when trained and tested on data from different databases. This issue, known as domain adaptation and/or dataset bias in the literature, is due to a distribution mismatch between data collections. Methods addressing it go from max-margin classifiers to learning how to modify the features and obtain a more robust representation. Recent work showed that by casting the problem into the image-to-class recognition framework, the domain adaptation problem is significantly alleviated [23]. Here we follow this approach, and show how a very simple, learning free Naive Bayes Nearest Neighbor (NBNN)-based domain adaptation algorithm can significantly alleviate the distribution mismatch among source and target data, especially when the number of classes and the number of sources grow. Experiments on standard benchmarks used in the literature show that our approach (a) is competitive with the current state of the art on small scale problems, and (b) achieves the current state of the art as the number of classes and sources grows, with minimal computational requirements. © Springer International Publishing Switzerland 2015

    Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi

    Get PDF
    We report superconductivity at Tc=1.22T_c = 1.22 K and magnetic order at TN=1.06T_N = 1.06 K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi. The upper critical field, Bc2B_{c2}, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T0T \rightarrow 0. Magnetic order is found below TcT_c and is suppressed at BM2.5B{_M} \sim 2.5 T for T0T \rightarrow 0. Since TcTNT_c \simeq T_N, the interaction of superconductivity and magnetism is expected to give rise to a complex ground state. Moreover, electronic structure calculations show ErPdBi has a topologically nontrivial band inversion and thus may serve as a new platform to study the interplay of topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter

    ClassCut for Unsupervised Class Segmentation

    Get PDF
    Abstract. We propose a novel method for unsupervised class segmentation on a set of images. It alternates between segmenting object instances and learning a class model. The method is based on a segmentation energy defined over all images at the same time, which can be optimized efficiently by techniques used before in interactive segmentation. Over iterations, our method progressively learns a class model by integrating observations over all images. In addition to appearance, this model captures the location and shape of the class with respect to an automatically determined coordinate frame common across images. This frame allows us to build stronger shape and location models, similar to those used in object class detection. Our method is inspired by interactive segmentation methods [1], but it is fully automatic and learns models characteristic for the object class rather than specific to one particular object/image. We experimentally demonstrate on the Caltech4, Caltech101, and Weizmann horses datasets that our method (a) transfers class knowledge across images and this improves results compared to segmenting every image independently; (b) outperforms Grabcut [1] for the task of unsupervised segmentation; (c) offers competitive performance compared to the state-of-the-art in unsupervised segmentation and in particular it outperforms the topic model [2].

    Heat shock proteins and neurodegenerative disorders

    Get PDF
    10.1100/tsw.2008.48TheScientificWorldJournal8270-27

    Correlation of metallothionein expression with apoptosis in nasopharyngeal carcinoma

    Get PDF
    The expression of metallothionein (MT), an intracellular ubiquitous low molecular weight protein thiol with antioxidant properties, was studied in nasopharyngeal cancer (NPC) and correlated with the apoptotic index. Immunohistochemical staining of randomly selected, formalin-fixed and paraffin-embedded normal and malignant nasopharyngeal tissues were analysed for the expression of MT using the commercially available E9 antibody directed against MT I and MT II isoforms. The corresponding apoptosis labelling indices were evaluated by the TUNEL method. Localization of MT at the ultrastructural level was studied by immunogold labelling. All the tumour sections (17 specimens) showed MT-immunopositivity. A direct correlation between the percentage of MT-positive cells and the staining intensity was noted (P< 0.001; Pearson's r = 0.95). There was absence of cytoplasmic staining and only nuclear staining (with localization in the nucleoplasm) was demonstrated in the tumour cells. In normal epithelium of the nasopharynx, the basal layer was stained. An inverse relationship was observed between the level of MT expression and the apoptotic index in the NPC tissues (P = 0.0059; Pearson's r = –0.6380). The results suggest that overexpression of MT in NPC may protect the tumour cells from entering into the apoptotic process and thereby contribute to tumour expansion. Preferential localization of MT in the nuclei of NPC cells may possibly enhance radioresistance since radiotherapy is known to eradicate tumour cells by free radical-induced apoptosis. © 2000 Cancer Research Campaig

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}

    Metallothionein 1E mRNA is highly expressed in oestrogen receptor-negative human invasive ductal breast cancer

    Get PDF
    Metallothioneins (MTs), a group of ubiquitous metalloproteins, comprise isoforms encoded by ten functional genes in humans. Different MT isoforms possibly play different functional roles during development or under various physiological conditions. The MT-1E isoform mRNA has been recently shown to be differentially expressed in oestrogen receptor (OR)-positive and OR-negative breast cancer cell lines. In this study, we evaluated MT-1E mRNA expression via semi-quantitative RT-PCR in 51 primary invasive ductal breast cancer tissues, concurrently with OR-positive and progesterone receptor (PR)-positive MCF7 cells, OR-negative and PR-negative MDA-MB-231 cells and PR-transfected MDA-MB-231 breast cancer cells (ABC28). We demonstrated significantly higher MT-1E mRNA expression in OR-negative compared with OR-positive breast cancer tissues (P= 0.026). MCF7 cells lacked MT-1E mRNA expression, while both OR- and PR-negative MDA-MD-231 cells exhibited a high level of MT-1E mRNA expression. The level of MT-1E mRNA expression in progesterone-treated and -untreated ABC28 cells remained similar as the parental cell line MDA-MB-231-C2 cells. The results suggest that MT-1E may have specific and functional roles in OR-negative invasive ductal breast cancers, possibly mediated via effector genes downstream of the oestrogen receptor, but not through the PR pathway. © 2000 Cancer Research Campaig

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio
    corecore