90,535 research outputs found

    Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles

    Get PDF
    The need to improve fuel economy and reduce the emission of CO2 and other harmful pollution from internal-combustion-engine vehicles has led to engine downsizing. However, downsized turbocharged engines exhibit a relatively low torque capability at low engine speeds. To overcome this problem, an electrical torque boost may be employed while accelerating and changing gear and to facilitate energy recovery during regenerative braking. This paper describes the operational requirements of a supercapacitor-based torque-boost system, outlines the design and sizing of the electrical drive-train components, and presents experimental characterization of a demonstrator system

    Further thoughts on precision

    Get PDF
    Background: There has been much discussion amongst automated software defect prediction researchers regarding use of the precision and false positive rate classifier performance metrics. Aim: To demonstrate and explain why failing to report precision when using data with highly imbalanced class distributions may provide an overly optimistic view of classifier performance. Method: Well documented examples of how dependent class distribution affects the suitability of performance measures. Conclusions: When using data where the minority class represents less than around 5 to 10 percent of data points in total, failing to report precision may be a critical mistake. Furthermore, deriving the precision values omitted from studies can reveal valuable insight into true classifier performancePeer reviewedFinal Accepted Versio

    Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering

    Full text link
    We present a detailed temperature dependent Raman light scattering study of optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K), Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting BaFe{2}As{2} single crystals. In all samples we observe a strong continuous narrowing of the Raman-active Fe and As vibrations upon cooling below the spin-density-wave transition Ts. We attribute this effect to the opening of the spin-density-wave gap. The electron-phonon linewidths inferred from these data greatly exceed the predictions of ab-initio density functional calculations without spin polarization, which may imply that local magnetic moments survive well above Ts. A first-order structural transition accompanying the spin-density-wave transition induces discontinuous jumps in the phonon frequencies. These anomalies are increasingly suppressed for higher potassium concentrations. We also observe subtle phonon anomalies at the superconducting transition temperature Tc, with a behavior qualitatively similar to that in the cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Entanglement between two fermionic atoms inside a cylindrical harmonic trap

    Get PDF
    We investigate quantum entanglement between two (spin-1/2) fermions inside a cylindrical harmonic trap, making use of the von Neumann entropy for the reduced single particle density matrix as the pure state entanglement measure. We explore the dependence of pair entanglement on the geometry and strength of the trap and on the strength of the pairing interaction over the complete range of the effective BCS to BEC crossover. Our result elucidates an interesting connection between our model system of two fermions and that of two interacting bosons.Comment: to appear in PR
    • 

    corecore