34 research outputs found

    Chronic ventricular pacing in children: toward prevention of pacing-induced heart disease

    Get PDF
    In children with congenital or acquired complete atrioventricular (AV) block, ventricular pacing is indicated to increase heart rate. Ventricular pacing is highly beneficial in these patients, but an important side effect is that it induces abnormal electrical activation patterns. Traditionally, ventricular pacemaker leads are positioned at the right ventricle (RV). The dyssynchronous pattern of ventricular activation due to RV pacing is associated with an acute and chronic impairment of left ventricular (LV) function, structural remodeling of the LV, and increased risk of heart failure. Since the degree of pacing-induced dyssynchrony varies between the different pacing sites, ‘optimal-site pacing’ should aim at the prevention of mechanical dyssynchrony. Especially in children, generally paced from a very early age and having a perspective of life-long pacing, the preservation of cardiac function during chronic ventricular pacing should take high priority. In the perspective of the (patho)physiology of ventricular pacing and the importance of the sequence of activation, this paper provides an overview of the current knowledge regarding possible alternative sites for chronic ventricular pacing. Furthermore, clinical implications and practical concerns of the various pacing sites are discussed. The review concludes with recommendations for optimal-site pacing in children

    Animal Models of Dyssynchrony

    Get PDF
    Cardiac resynchronization therapy (CRT) is an important therapy for patients with heart failure and conduction pathology, but the benefits are heterogeneous between patients and approximately a third of patients do not show signs of clinical or echocardiographic response. This calls for a better understanding of the underlying conduction disease and resynchronization. In this review, we discuss to what extent established and novel animal models can help to better understand the pathophysiology of dyssynchrony and the benefits of CRT

    Classic and recent advances in understanding amnesia

    Get PDF
    Neurological amnesia has been and remains the focus of intense study, motivated by the drive to understand typical and atypical memory function and the underlying brain basis that is involved. There is now a consensus that amnesia associated with hippocampal (and, in many cases, broader medial temporal lobe) damage results in deficits in episodic memory, delayed recall, and recollective experience. However, debate continues regarding the patterns of preservation and impairment across a range of abilities, including semantic memory and learning, delayed recognition, working memory, and imagination. This brief review highlights some of the influential and recent advances in these debates and what they may tell us about the amnesic condition and hippocampal function

    De novo implantation vs. upgrade cardiac resynchronization therapy: a systematic review and meta-analysis

    Get PDF
    Patients with conventional pacemakers or implanted defibrillators are often considered for cardiac resynchronization therapy (CRT). Our aim was to summarize the available evidences regarding the clinical benefits of upgrade procedures. A systematic literature search was performed from studies published between 2006 and 2017 in order to compare the outcome of CRT upgrade vs. de novo implantations. Outcome data on all-cause mortality, heart failure events, New York Heart Association (NYHA) Class, QRS narrowing and echocardiographic parameters were analysed. A total of 16 reports were analysed comprising 489,568 CRT recipients, of whom 468,205 patients underwent de novo and 21,363 upgrade procedures. All-cause mortality was similar after CRT upgrade compared to de novo implantations (RR 1.19, 95% CI 0.88-1.60, p = 0.27). The risk of heart failure was also similar in both groups (RR 0.96, 95% CI 0.70-1.32, p = 0.81). There was no significant difference in clinical response after CRT upgrade compared to de novo implantations in terms of improvement in left ventricular ejection fraction (DeltaEF de novo - 6.85% vs. upgrade - 9.35%; p = 0.235), NYHA class (DeltaNYHA de novo - 0.74 vs. upgrade - 0.70; p = 0.737) and QRS narrowing (DeltaQRS de novo - 9.6 ms vs. upgrade - 29.5 ms; p = 0.485). Our systematic review and meta-analysis of currently available studies reports that CRT upgrade is associated with similar risk for all-cause mortality compared to de novo resynchronization therapy. Benefits on reverse remodelling and functional capacity improved similarly in both groups suggesting that CRT upgrade may be safely and effectively offered in routine practice. CLINICAL TRIAL REGISTRATION: Prospero Database-CRD42016043747

    The long and the short of memory: Neuropsychological studies on the interaction of working memory and long-term memory formation

    Get PDF
    Contains fulltext : 126060.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 25 april 2014Promotor : Kessels, R.P.C.160 p

    Single-item and associative working memory in stroke patients

    Get PDF
    Contains fulltext : 117657.pdf (publisher's version ) (Open Access)In this study, we examined working memory performance of stroke patients. A previous study assessing amnesia patients found deficits on an associative working memory task, although standard neuropsychological working memory tests did not detect any deficits. We now examine whether this may be the case for stoke patients as well. The current task contained three conditions: one spatial condition, one object condition and one binding condition in which both object and location had to be remembered. In addition, subsequent long-term memory was assessed. The results indicate that our sample of stroke patients shows a working memory deficit, but only on the single-feature conditions. The binding condition was more difficult than both single-feature conditions, but patients performed equally well as compared to matched healthy controls. No deficits were found on the subsequent long-term memory task. These results suggest that associative working memory may be mediated by structures of the medial temporal lobe.3 p

    Cognitive and neuropsychological underpinnings of relational and conjunctive working memory binding across age

    No full text
    The ability to form associations (i.e., binding) is critical for memory formation. Recent studies suggest that aging specifically affects relational binding (associating separate features) but not conjunctive binding (integrating features within an object). Possibly, this dissociation may be driven by the spatial nature of the studies so far. Alternatively, relational binding may simply require more attentional resources. We assessed relational and conjunctive binding in three age groups and we included an interfering task (i.e., an articulatory suppression task). Binding was examined in a working memory (WM) task using non-spatial features: shape and colour. Thirty-one young adults (mean age = 22.35), 30 middle-aged adults (mean age = 54.80) and 30 older adults (mean age = 70.27) performed the task. Results show an effect of type of binding and an effect of age but no interaction between type of binding and age. The interaction between type of binding and interference was significant. These results indicate that aging affects relational binding and conjunctive binding similarly. However, relational binding is more susceptible to interference than conjunctive binding, which suggests that relational binding may require more attentional resources. We suggest that a general decline in WM resources associated with frontal dysfunction underlies age-related deficits in WM binding

    Associative working memory and subsequent episodic memory in Alzheimer's disease

    No full text
    Contains fulltext : 110136.pdf (publisher's version ) (Closed access)Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory in relation to subsequent episodic memory formation in patients with early Alzheimer's disease to examine whether these findings reflect deficits in long-term encoding rather than 'pure' working memory processing. Nineteen patients with Alzheimer's disease and 21 controls performed a working memory task in which objects had to be searched at different locations. The subsequent episodic memory test required participants to reposition objects to their original locations. Patients with Alzheimer's disease were impaired on associative working memory and subsequent episodic memory, but they performed above chance at high-load episodic memory trials. This suggests that when working memory capacity is exceeded, long-term memory compensates.5 p

    Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy

    No full text
    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long

    The interaction of working memory performance and episodic memory formation in patients with Korsakoff's amnesia.

    No full text
    Contains fulltext : 109864.pdf (publisher's version ) (Closed access)Both neuroimaging work and studies investigating amnesic patients have shown involvement of the medial temporal lobe during working memory tasks, especially when multiple items or features have to be associated. However, so far no study has examined the relationship between working memory and subsequent episodic memory in patients using similar tasks. In this study, we compared patients with amnesia due to Korsakoff's syndrome (n=19) with healthy controls (n=18) on an associative working memory task followed by an unexpected subsequent episodic memory task. The computerized working memory task required participants to maintain two pairs of faces and houses for either short (3s) or long (6s) delays. Approximately 5 minutes after completion of the working memory task, an unexpected subsequent recognition task with a two-alternative forced choice paradigm was administered. By directly comparing working memory and subsequent episodic memory, we were able to examine long-term encoding processes that may take place after longer delays. As expected, patients performed at chance level on the episodic memory task. Interestingly, patients also showed significantly impaired working memory performance (p<.01), even at short delays. Longer delays did not result in better subsequent memory, indicating that they do not facilitate long-term encoding processes. Our results are discussed in relation to Baddeley's working memory model as the episodic buffer is assumed to be a short-term store for maintaining bound representations. In light of these results, the long-standing view that working memory and long-term memory are strictly dissociated may need to be revisited
    corecore