11 research outputs found

    Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133<sup>+&nbsp;</sup>tumor-initiating cell fraction.

    No full text
    The identification of novel approaches to specifically target the DNA-damage checkpoint response in chemotherapy-resistant cancer stem cells (CSC) of solid tumors has recently attracted great interest. We show here in colon cancer cell lines and primary colon cancer cells that inhibition of checkpoint-modulating phosphoinositide 3-kinase-related (PIK) kinases preferentially depletes the chemoresistant and exclusively tumorigenic CD133(+) cell fraction. We observed a time- and dose-dependent disproportionally pronounced loss of CD133(+) cells and the consecutive lack of in vitro and in vivo tumorigenicity of the remaining cells. Depletion of CD133(+) cells was initiated through apoptosis of cycling CD133(+) cells and further substantiated through subsequent recruitment of quiescent CD133(+) cells into the cell cycle followed by their elimination. Models using specific PIK kinase inhibitors, somatic cell gene targeting, and RNA interference demonstrated that the observed detrimental effects of caffeine on CSC were attributable specifically to the inhibition of the PIK kinase ataxia telangiectasia- and Rad3-related (ATR). Mechanistically, phosphorylation of CHK1 checkpoint homolog (S. pombe; CHK1) was significantly enhanced in CD133(+) as compared with CD133(-) cells on treatment with DNA interstrand-crosslinking (ICL) agents, indicating a preferential activation of the ATR/CHK1-dependent DNA-damage response in tumorigenic CD133(+) cells. Consistently, the chemoresistance of CD133(+) cells toward DNA ICL agents was overcome through inhibition of ATR/CHK1-signaling. In conclusion, our study illustrates a novel target to eliminate the tumorigenic CD133(+) cell population in colon cancer and provides another rationale for the development of specific ATR-inhibitors

    Phenylalanine hydroxylase deficiency: diagnosis and management guideline.

    No full text
    Phenylalanine hydroxylase deficiency, traditionally known as phenylketonuria, results in the accumulation of phenylalanine in the blood of affected individuals and was the first inborn error of metabolism to be identified through population screening. Early identification and treatment prevent the most dramatic clinical sequelae of the disorder, but new neurodevelopmental and psychological problems have emerged in individuals treated from birth. The additional unanticipated recognition of a toxic effect of elevated maternal phenylalanine on fetal development has added to a general call in the field for treatment for life. Two major conferences sponsored by the National Institutes of Health held \u3e10 years apart reviewed the state of knowledge in the field of phenylalanine hydroxylase deficiency, but there are no generally accepted recommendations for therapy. The purpose of this guideline is to review the strength of the medical literature relative to the treatment of phenylalanine hydroxylase deficiency and to develop recommendations for diagnosis and therapy of this disorder. Evidence review from the original National Institutes of Health consensus conference and a recent update by the Agency for Healthcare Research and Quality was used to address key questions in the diagnosis and treatment of phenylalanine hydroxylase deficiency by a working group established by the American College of Medical Genetics and Genomics. The group met by phone and in person over the course of a year to review these reports, develop recommendations, and identify key gaps in our knowledge of this disorder. Above all, treatment of phenylalanine hydroxylase deficiency must be life long, with a goal of maintaining blood phenylalanine in the range of 120-360 µmol/l. Treatment has predominantly been dietary manipulation, and use of low protein and phenylalanine medical foods is likely to remain a major component of therapy for the immediate future. Pharmacotherapy for phenylalanine hydroxylase deficiency is in early stages with one approved medication (sapropterin, a derivative of the natural cofactor of phenylalanine hydroxylase) and others under development. Eventually, treatment of phenylalanine hydroxylase deficiency will be individualized with multiple medications and alternative medical foods available to tailor therapy. The primary goal of therapy should be to lower blood phenylalanine, and any interventions, including medications, or combination of therapies that help to achieve that goal in an individual, without other negative consequences, should be considered appropriate therapy. Significant evidence gaps remain in our understanding of the optimum therapies for phenylalanine hydroxylase deficiency, nonphenylalanine effects of these therapies, and long-term sequelae of even well-treated disease in children and adults

    Personality, attentional biases towards emotional faces and symptoms of mental disorders in an adolescent sample

    No full text
    corecore