669 research outputs found

    Benchmarking nuclear models for Gamow-Teller response

    Get PDF
    A comparative study of the nuclear Gamow-Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended "jj77" model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow-Teller response functions are calculated for 208-Pb, 132-Sn and 78-Ni within both RTBA and QRPA. The strengths obtained for 208-Pb are compared to data that enables a firm model benchmarking. For the nucleus 132-Sn, also SM calculations are performed within the model space truncated at the level of a particle-hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph+phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.Comment: 9 pages, 2 figures, 1 table; to be published in Phys. Lett.

    Dynamical coupled-channel study of K+ Lambda photoproduction

    Full text link
    Results for the reaction gamma p --> K+ Lambda, studied within a constituent quark model and a dynamical coupled-channel approach, are presented and compared with recent data. Issues related to the search for missing baryon resonances are briefly discussed and the role played by a third S_{11} resonance is underlined.Comment: To appear in the proceedings of BARYONS 2004, Palaiseau, France, 25-29 Oct 200

    A Pair Polarimeter for Linearly Polarized High Energy Photons

    Get PDF
    A high quality beam of linearly polarized photons of several GeV will become available with the coherent bremsstrahlung technique at JLab. We have developed a polarimeter which requires about two meters of the beam line, has an analyzing power of 20% and an efficiency of 0.02%. The layout and first results of a polarimeter test on the laser back-scattering photon beam at SPring-8/LEPS are presented

    PET-based dose painting in non-small cell lung cancer: Comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes.

    Get PDF
    BACKGROUND AND PURPOSE: We compared two imaging biomarkers for dose-escalation in patients with advanced non-small cell lung cancer (NSCLC). Treatment plans boosting metabolically active sub-volumes defined by FDG-PET or hypoxic sub-volumes defined by HX4-PET were compared with boosting the entire tumour.MATERIALS AND METHODS: Ten NSCLC patients underwent FDG- and HX4-PET/CT scans prior to radiotherapy. Three isotoxic dose-escalation plans were compared per patient: plan A, boosting the primary tumour (PTVprim); plan B, boosting sub-volume with FDG >50% SUVmax (PTVFDG); plan C, boosting..

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 4852^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure

    Spectroscopy of 13B via the 13C(t,3He) reaction at 115 AMeV

    Full text link
    Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found. This state was assigned a spin-parity of 3/2- by comparison with shell-model calculations using the WBP and WBT interactions which were modified to allow for mixing between nhw and (n+2)hw configurations. This assignment agrees with a recent result from a lifetime measurement of excited states in 13B. The shell-model calculations also explained the relatively large spectroscopic strength measured for a low-lying 1/2+ state at 4.83 MeV in 13B. The cross sections for dipole transitions up to Ex(13B)= 20 MeV excited via the 13C(t,3He) reaction were also compared with the shell-model calculations. The theoretical cross sections exceeded the data by a factor of about 1.8, which might indicate that the dipole excitations are "quenched". Uncertainties in the reaction calculations complicate that interpretation.Comment: 11 pages, 6 figure
    corecore