1,968 research outputs found

    Analisis Rantai Pasok Produk Beras dari Kabupaten Konawe Selatan ke Kota Kendari

    Full text link
    This study aims to find out how the supply chain of rice from South Konawe to Kendari. This type of research is included in descriptive research or categorized in qualitative research method by using survey method that is described, explain and interpret a phenomenon that occurs on an object and data is qualitative, ie data that is described with words or sentences by category to obtain a conclusion. This research was conducted in South Konawe Village specifically at UD. Fandi in Laeya District, South Konawe District in August 2017. Data collection techniques were conducted through observation, interviews, discussions with supply chain members and documentation at the research sites. Supply Chain of rice products from South Konawe District to Kendari City starts from Farmers, Rice Millers, Distributors UD Fandi, Retailer and Final Consumer. Farmers as rice suppliers cultivate and sell their crops to the rice mills, then the mills' process rice from farmers into rice products to be sold to Distributor. In this research, the Distributor Party also as the owner of rice milling, after the packaging of rice products, will then be distributed to retailers both in South Konawe District itself and outside the region, especially Kendari City distributor of UD. Fandi has a rice warehouse which is a shelter of rice products that will be sold to retailers in Kendari City. The selling price of rice products from Distributor UD. Fandi is accepted by retailers in South Konawe and outside Kendari especially divided by size, for rice with size 50 kg sold with price Rp. 420.000, - and for rice with size 25 kg sold with price Rp. 220.000, Furthermore the retailers will repackage the rice products into several sizes that are tailored to the needs of the end consumer is the size of 10 kg, and size 5 kg. for rice with size 10 kg sold with price Rp. 110.000, - and rice with size 5 kg sold with price Rp. 55.000, -. But retailers also sell rice with liter sizes which for liters sold to consumers at a price of Rp. 8,000-8,500, / litres. This is done to adjust to the level of end consumer needs

    Influence of Temperature on Mutagenicity in Plants Exposed to Surface Disinfected Drinking Water.

    Get PDF
    Disinfection of surface drinking water, particularly water chlorination, produces by-products with potential genotoxic and/or carcinogenic activity. A study carried out at a pilot plant for drinking water disinfection of lake water revealed mutagenic activity of three different disinfectants (sodium hypochlorite, chlorine dioxide and peracetic acid) in different seasons using in situ mutagenicity assays, both in animal (micronucleus test) and in plant organisms (anaphase chro- mosomal aberration and micronucleus tests). The effects of the disinfectants appeared to be modulated by the season of exposure. In this study, we tried to understand if (and to what extent) the temperature parameter could actually play an independent role in the registered seasonal variation of mutagenic effects, neglecting the variation of other parameters, e.g. physical conditions and chemical composition of the lake water. Therefore plants (Allium cepa for chromosomal aberration test and Vicia faba for micronucleus test) were exposed to the same disinfected lake-water samples at differ- ent temperatures (10°C, 20°C and 30°C), according the ones registered during the in situ experiment. Long-term expo- sure at the temperatures of 20°C (both Vicia faba and Allium cepa) and 30°C (Vicia faba only) to disinfected waters in- duced clear mutagenic effects. These results show that temperature is an important variable which should be taken into account when in situ exposure of plants is planned for mutagenicity testing. Also, different plant systems clearly show specific temperature ranges suitable for their growth, thereby indicating the need for an accurate selection of the test organism for a specific experimental plan

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    The Extreme Energy Events HECR array: status and perspectives

    Full text link
    The Extreme Energy Events Project is a synchronous sparse array of 52 tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic Rays-related phenomena. The observatory is also meant to address Long Distance Correlation (LDC) phenomena: the network is deployed over a broad area covering 10 degrees in latitude and 11 in longitude. An overview of a set of preliminary results is given, extending from the study of local muon flux dependance on solar activity to the investigation of the upward-going component of muon flux traversing the EEE stations; from the search for anisotropies at the sub-TeV scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.

    Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam

    Get PDF
    We report an updated result from the ICARUS experiment on the search for {\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {\nu}e events have been visually identified over the full sample, compared with an expectation of 6.4 +- 0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90% and 99% confidence levels the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3 respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS collaboration

    Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    Get PDF
    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This result is in agreement with the value previously reported by the ICARUS collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    corecore