5,362 research outputs found
Hotter, Denser, Faster, Smaller...and Nearly-Perfect: What's the matter at RHIC?
The experimental and theoretical status of the ``near perfect fluid'' at RHIC
is discussed. While the hydrodynamic paradigm for understanding collisions at
RHIC is well-established, there remain many important open questions to address
in order to understand its relevance and scope. It is also a crucial issue to
understand how the early equilibration is achieved, requiring insight into the
active degrees of freedom at early times.Comment: 10 Pages, 13 Figures, submitted to the proceedings of the Second
Meeting of the APS Topical Group on Hadronic Physics, Nashville, TN, October
22-24, 200
Comment on ``Manipulating the frequency entangled states by an acoutic-optical modulator''
A recent theoretical paper [1] proposes a scheme for entanglement swapping
utilizing acousto-optic modulators without requiring a Bell-state measurement.
In this comment, we show that the proposal is flawed and no entanglement
swapping can occur without measurement.Comment: 6 pages, 2 figures submitted to Phys. Rev
A characterization of those automata that structurally generate finite groups
Antonenko and Russyev independently have shown that any Mealy automaton with
no cycles with exit--that is, where every cycle in the underlying directed
graph is a sink component--generates a fi- nite (semi)group, regardless of the
choice of the production functions. Antonenko has proved that this constitutes
a characterization in the non-invertible case and asked for the invertible
case, which is proved in this paper
\'Etale groupoids and Steinberg algebras, a concise introduction
We give a concise introduction to (discrete) algebras arising from \'etale
groupoids, (aka Steinberg algebras) and describe their close relationship with
groupoid C*-algebras. Their connection to partial group rings via inverse
semigroups also explored
Development of an international standard set of outcome measures for patients with atrial fibrillation: a report of the International Consortium for Health Outcomes Measurement (ICHOM) atrial fibrillation working group.
AIMS: As health systems around the world increasingly look to measure and improve the value of care that they provide to patients, being able to measure the outcomes that matter most to patients is vital. To support the shift towards value-based health care in atrial fibrillation (AF), the International Consortium for Health Outcomes Measurement (ICHOM) assembled an international Working Group (WG) of 30 volunteers, including health professionals and patient representatives to develop a standardized minimum set of outcomes for benchmarking care delivery in clinical settings. METHODS AND RESULTS: Using an online-modified Delphi process, outcomes important to patients and health professionals were selected and categorized into (i) long-term consequences of disease outcomes, (ii) complications of treatment outcomes, and (iii) patient-reported outcomes. The WG identified demographic and clinical variables for use as case-mix risk adjusters. These included baseline demographics, comorbidities, cognitive function, date of diagnosis, disease duration, medications prescribed and AF procedures, as well as smoking, body mass index (BMI), alcohol intake, and physical activity. Where appropriate, and for ease of implementation, standardization of outcomes and case-mix variables was achieved using ICD codes. The standard set underwent an open review process in which over 80% of patients surveyed agreed with the outcomes captured by the standard set. CONCLUSION: Implementation of these consensus recommendations could help institutions to monitor, compare and improve the quality and delivery of chronic AF care. Their consistent definition and collection, using ICD codes where applicable, could also broaden the implementation of more patient-centric clinical outcomes research in AF
Super-resolving phase measurements with a multi-photon entangled state
Using a linear optical elements and post-selection, we construct an entangled
polarization state of three photons in the same spatial mode. This state is
analogous to a ``photon-number path entangled state'' and can be used for
super-resolving interferometry. Measuring a birefringent phase shift, we
demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure
From QFT to DCC
A quantum field theoretical model for the dynamics of the disoriented chiral
condensate is presented. A unified approach to relate the quantum field theory
directly to the formation, decay and signals of the DCC and its evolution is
taken. We use a background field analysis of the O(4) sigma model keeping
one-loop quantum corrections (quadratic order in the fluctuations). An
evolution of the quantum fluctuations in an external, expanding metric which
simulates the expansion of the plasma, is carried out. We examine, in detail,
the amplification of the low momentum pion modes with two competing effects,
the expansion rate of the plasma and the transition rate of the vacuum
configuration from a metastable state into a stable state.We show the effect of
DCC formation on the multiplicity distributions and the Bose-Einstein
correlations.Comment: 34 pages, 10 figure
System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV
We present transverse momentum distributions of charged hadrons produced in
Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for
transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 <
p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta <
1.4. The nuclear modification factor R_AA is calculated relative to p+p data at
both collision energies as a function of collision centrality. At a given
collision energy and fractional cross-section, R_AA is observed to be
systematically larger in Cu+Cu collisions compared to Au+Au. However, for the
same number of participating nucleons, R_AA is essentially the same in both
systems over the measured range of p_T, in spite of the significantly different
geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
- …