5,362 research outputs found

    Hotter, Denser, Faster, Smaller...and Nearly-Perfect: What's the matter at RHIC?

    Get PDF
    The experimental and theoretical status of the ``near perfect fluid'' at RHIC is discussed. While the hydrodynamic paradigm for understanding collisions at RHIC is well-established, there remain many important open questions to address in order to understand its relevance and scope. It is also a crucial issue to understand how the early equilibration is achieved, requiring insight into the active degrees of freedom at early times.Comment: 10 Pages, 13 Figures, submitted to the proceedings of the Second Meeting of the APS Topical Group on Hadronic Physics, Nashville, TN, October 22-24, 200

    Comment on ``Manipulating the frequency entangled states by an acoutic-optical modulator''

    Full text link
    A recent theoretical paper [1] proposes a scheme for entanglement swapping utilizing acousto-optic modulators without requiring a Bell-state measurement. In this comment, we show that the proposal is flawed and no entanglement swapping can occur without measurement.Comment: 6 pages, 2 figures submitted to Phys. Rev

    A characterization of those automata that structurally generate finite groups

    Get PDF
    Antonenko and Russyev independently have shown that any Mealy automaton with no cycles with exit--that is, where every cycle in the underlying directed graph is a sink component--generates a fi- nite (semi)group, regardless of the choice of the production functions. Antonenko has proved that this constitutes a characterization in the non-invertible case and asked for the invertible case, which is proved in this paper

    Development of an international standard set of outcome measures for patients with atrial fibrillation: a report of the International Consortium for Health Outcomes Measurement (ICHOM) atrial fibrillation working group.

    Get PDF
    AIMS: As health systems around the world increasingly look to measure and improve the value of care that they provide to patients, being able to measure the outcomes that matter most to patients is vital. To support the shift towards value-based health care in atrial fibrillation (AF), the International Consortium for Health Outcomes Measurement (ICHOM) assembled an international Working Group (WG) of 30 volunteers, including health professionals and patient representatives to develop a standardized minimum set of outcomes for benchmarking care delivery in clinical settings. METHODS AND RESULTS: Using an online-modified Delphi process, outcomes important to patients and health professionals were selected and categorized into (i) long-term consequences of disease outcomes, (ii) complications of treatment outcomes, and (iii) patient-reported outcomes. The WG identified demographic and clinical variables for use as case-mix risk adjusters. These included baseline demographics, comorbidities, cognitive function, date of diagnosis, disease duration, medications prescribed and AF procedures, as well as smoking, body mass index (BMI), alcohol intake, and physical activity. Where appropriate, and for ease of implementation, standardization of outcomes and case-mix variables was achieved using ICD codes. The standard set underwent an open review process in which over 80% of patients surveyed agreed with the outcomes captured by the standard set. CONCLUSION: Implementation of these consensus recommendations could help institutions to monitor, compare and improve the quality and delivery of chronic AF care. Their consistent definition and collection, using ICD codes where applicable, could also broaden the implementation of more patient-centric clinical outcomes research in AF

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    From QFT to DCC

    Full text link
    A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A unified approach to relate the quantum field theory directly to the formation, decay and signals of the DCC and its evolution is taken. We use a background field analysis of the O(4) sigma model keeping one-loop quantum corrections (quadratic order in the fluctuations). An evolution of the quantum fluctuations in an external, expanding metric which simulates the expansion of the plasma, is carried out. We examine, in detail, the amplification of the low momentum pion modes with two competing effects, the expansion rate of the plasma and the transition rate of the vacuum configuration from a metastable state into a stable state.We show the effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.Comment: 34 pages, 10 figure

    System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    Full text link
    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.Comment: Submitted to Physical Review Letter
    corecore