99 research outputs found

    Fabrication of carbon paste electrode containing [PFeW11O39]4− polyoxoanion supported on modified amorphous silica gel and its electrocatalytic activity for H2O2 reduction

    Get PDF
    [PFeW11O39]4− (PFeW11) supported on the surface of 3-aminopropyl(triethoxy)silane modified silica gel was synthesized and used as a bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The electrochemical behavior of the modified electrode was investigated. Cyclic voltammetry studies showed that the PFeW11 on the electrode surface sustained the same electrochemical properties as that of the PFeW11 in solution. The preparation of chemically modified electrode is simple and quiet reproducible using inexpensive material. The modified electrode had high electrocatalytic activity toward H2O2 reduction and it was successfully applied as an electrochemical detector to monitor H2O2 in flow injection analysis (FIA). The electrocatalytic peak current was found to be linear with the H2O2 concentration in the range 10–200 μmol L−1 with a correlation coefficient of 0.998 and a detection limit (3σ) of 7.4 μmol L−1 H2O2. The electrode has the remarkable advantage of surface renewal owing to bulk modification, as well as simple preparation, good mechanical and chemical stability and reproducibility

    Comparison of the CES-D and PHQ-9 depression scales in people with type 2 diabetes in Tehran, Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quality of life in patients with various chronic disorders, including diabetes has been directly affected by depression. Depression makes patients less likely to manage their self-care regimens. Accurate assessment of depression in diabetic populations is important to the treatment of depression in this group and may improve diabetes management. To our best knowledge, there are few studies that have looked for utilizing questionnaires in screening for depression among patients with diabetes in Iran. Therefore the aim of this study was to assess the efficacy and accuracy of the Center for Epidemiological Studies Depression (CES-D) scale and the Patient Health Questionnaire-9 (PHQ-9), in comparison with clinical interview in people with type 2 diabetes.</p> <p>Methods</p> <p>Outpatients who attended diabetes clinics at IEM were recruited on a consecutive basis between February 2009 and July 2009. Inclusion criteria included patients with type 2 diabetes who could fluently read and speak Persian, had no severe diabetes complications and no history of psychological disorders. The history of psychological disorders was ascertained through patients' medical files, taking history of any medications in this regard. The study design was explained to all patients and informed consent was obtained. Volunteer patients completed the Persian version of the questionnaires (CES-D and PHQ-9) and a psychiatrist interviewed them based on Structured Clinical Interview (SCID) for DSM-IV criteria.</p> <p>Results</p> <p>Of the 185 patients, 43.2% were diagnosed as having Major Depressive Disorder (MDD) based on the clinical interview, 47.6% with PHQ-9 and 61.62% with CES-D. The Area Under the Curve (AUC) for the total score of PHQ-9 was 0.829 ± 0.30. A cut-off score for PHQ-9 of ≥ 13 provided an optimal balance between sensitivity (73.80%) and specificity (76.20%). For CES-D the AUC for the total score was 0.861 ± 0.029. Optimal balance between sensitivity (78.80%) and specificity (77.1%) was provided at cut-off score of ≥ 23.</p> <p>Conclusions</p> <p>It could be concluded that the PHQ-9 and CES-D perform well as screening instruments, but in diagnosing major depressive disorder, a formal diagnostic process following the PHQ-9 and also the CES-D remains essential.</p

    Detecting unilateral phrenic paralysis by acoustic respiratory analysis

    Get PDF
    The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB) than the affected (5.7±3.5 dB) side in all patients (p = 0.0002), differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB). In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB) and right (17.4±5.7 dB) sides (p = 0.2730), differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%). The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.Peer ReviewedPostprint (published version

    A Pore-Scale Investigation of the Transient Response of Forced Convection in Porous Media to Inlet Ramp Inputs

    Get PDF
    This paper investigates the transient response of forced convection of heat in a reticulated porous medium through taking a pore-scale approach. The thermal system is subject to a ramp disturbance superimposed on the entrance flow temperature/velocity. The developed model consisted of ten cylindrical obstacles aligned in a staggered arrangement with set isothermal boundary conditions. A few types of fluids, along with different values of porosity and Reynolds number are considered. Assuming a laminar flow, the unsteady Navier Stokes and energy equations are solved numerically. The temporally developing flow and temperature fields as well as the surface averaged Nusselt numbers are used to explore the transient response of the system. Further, a Response Lag Ratio (RLR) is defined to compare the transient response and the input. The results reveal that an increase in amplitude increases the RLR. Nonetheless, an increase in ramp duration decreases the RLR, particularly for high density fluids. Interestingly, it is found that Reynolds number has almost negligible effects upon RLP. This study clearly reflects the importance of conducting pore-scale analyses for understanding the transient response of heat convection in porous media

    On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis

    Get PDF
    Heat convection response of a porous medium to the harmonic disturbances in the inlet flow is investigated in a configuration consisting of several obstacles. Navier Stokes and energy equations are solved computationally and the average Nusselt number around the obstacles is favourably compared against the existing empirical data. The Nusselt number fluctuations are then examined, revealing that the dynamical relations between the inlet flow fluctuations as the input and those of Nusselt number as the output, can be nonlinear. The extent of encountered nonlinearity is determined quantitatively through introduction of a measure of nonlinearity. It is shown that increases in the pore-scale Reynolds number can strengthen the nonlinearity. However, this is not a global trend and further increases in Reynolds number may push the system dynamics back to linear. Application of the concept of transfer function to the identified linear cases reveals that the frequency response of the Nusselt number closely resembles a classical low-pass filter. Further, through a statistical analysis, it is shown that thermal response of the porous medium is strongly dominated by those of the first few obstacles. This highlights the importance of taking pore-scale approach in the dynamical problems that involve heat convection in porous media

    Applied multi-criteria ideal rehabilitation model for budget allocation across road infrastructure

    Get PDF
    The solution of prioritization problem for budget allocation across road infrastructure rehabilitation projects is highly complicated. This complexity is often due to the contradictions exist in budget allocation process. Such process concerns allocation of rehabilitation funds across various road infrastructures and taking into account multiple evaluation criteria. Therefore, budget allocation is a complex process with too many contradictions in form of criteria or attributes. According to the Systematic Innovation methodology, solving a problem means removing a contradiction. This paper presents a decision support approach for management of budget in rehabilitation process of road infrastructure, introducing Applied Multi-Criteria Ideal Rehabilitation Model. To achieve this, with the help of multi-criteria decision analysis, the Degree of Ideality is introduced as a function of all criteria. "Ideality" is the measure of how close the system is to the ideal final result. If the useful feature improves or harmful feature lessens, the ideality improves. In order to maximize the Degree of Ideality in the proposed Model, contradictions and resources are identified and ideal final result is introduced. This will result in a simple mechanism for allocation of budget across all the road infrastructures need to be rehabilitated

    The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors

    Get PDF
    Microreactors for chemical synthesis and combustion have already attracted significant attention. Exothermic catalytic activity features heavily in these devices and thus advective-diffusive transport is of key importance in their analyses. Yet, thermal modelling of the heat generated by catalytic reactions on the internal surfaces of porous microreactors has remained as an important unresolved issue. To address this, the diffusion of heat of catalytic reactions into three phases including fluid, porous solid and solid walls is investigated by extending an existing interface model of porous media under local thermal non-equilibrium. This is applied to a microchannel fully filled with a porous material, subject to a heat flux generated by a catalytic layer coated on the porous-wall boundary. The finite wall thickness and viscous dissipation of the flow kinetic energy are considered, and a two-dimensional analytical model is developed, examining the combined heat and mass transfer and thermodynamic irreversibilities of the system. The analytical solution is validated against the existing theoretical studies on simpler configurations as well as a computational model of the microreactor in the limit of very large porosity. In keeping with the recent findings, the wall thickness is shown to strongly influence the heat and mass transport within the system. This remains unchanged when the symmetricity of the microchannel is broken through placing walls of unequal thicknesses, while deviation from local thermal equilibrium is significantly intensified in this case. Importantly, the Nusselt number is shown to have a singular point, which remains fixed under various conditions

    The Effect of Water Extract of Rhus Coriaria L. on the Pathogenic Bacteria at Different Temperatures

    No full text
    BACKGROUND AND OBJECTIVE: Nowadays, natural preservatives are used in food industries rather than synthetic ones. Sumac fruit (Rhus coriaria L.) is widely used as an additive in meat products due to its antimicrobial effects. This study was conducted to examine antimicrobial properties of sumac at various temperatures. METHODS: In this experimental study, the extract of sumac was prepared using soaking method. Different concentrations (3.12-50 mg/ml) of the extract were used against S. aureus, L. monocytogenes, S. typhimurium, and E. coli O157:H7 bacteria. Growth assessment curve, minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) were evaluated using microplate method. FINDINGS: The results of this study demonstrated that MIC (6.25 mg/ml) and MBC (12.5 mg/ml) belonged to S. aureus and L. monocytogenes bacteria, respectively. The extract could significantly attenuate growth of the four bacteria at 4°C and 25°C (p<0.05). The effect of the extract on Gram-positive bacteria was significantly more than Gram-negative ones (p<0.05). Temperature reduction also affected the growth of the bacteria; at 4°C bacterial growth was less than 25°C, that is, at 6.25 concentration, S. typhimurium, and E. coli populations reduced from 3.55 log and 3.31 log to 2.14 log and 1.06 log, respectively. CONCLUSION: According to our findings, water extract of sumac is a viable alternative to chemical food preservatives, particularly at 4°C

    On the Response of Ultralean Combustion of CH4/H-2 Blends in a Porous Burner to Fluctuations in Fuel Flow-an Experimental Investigation

    Get PDF
    Fluctuations in the fuel flow rate may occur in practical combustion systems and result in flame destabilization. This is particularly problematic in lean and ultralean modes of burner operation. In this study, the response of a ceramic porous burner to fluctuations in the flow rate of different blends of methane and hydrogen is investigated experimentally. Prior to injection into the porous burner, the fuel blend is premixed with air at equivalence ratios below 0.275. The fuel streams are measured and controlled separately by programmable mass flow controllers, which impose sinusoidal fluctuations on the flow rates. To replicate realistic fluctuations in the fuel flow rate, the period of oscillations is chosen to be on the order of minutes. The temperature inside the ceramic foam is measured using five thermocouples located at the center of the working section of the burner. The flame embedded in porous media is imaged while the fuel flow is modulated. Analysis of the flame pictures and temperature traces shows that the forced oscillation of the fuel mixture leads to flame movement within the burner. This movement is found to act in accordance with the fluctuations in methane and hydrogen flows for both CH4(90%)–H2(10%) and CH4(70%)–H2(30%) mixtures. However, both fuel mixtures are noted to be rather insensitive to hydrogen flow fluctuation with a modulation amplitude below 30% of the steady flow. For the CH4(70%)–H2(30%) mixture, the flame in the porous medium can be modulated by fluctuations between 0 and 30% of steady methane flow without any noticeable flame destabilization
    corecore