1,460 research outputs found

    Supermetallic conductivity in bromine-intercalated graphite

    Full text link
    Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure

    Binary continuous random networks

    Full text link
    Many properties of disordered materials can be understood by looking at idealized structural models, in which the strain is as small as is possible in the absence of long-range order. For covalent amorphous semiconductors and glasses, such an idealized structural model, the continuous-random network, was introduced 70 years ago by Zachariasen. In this model, each atom is placed in a crystal-like local environment, with perfect coordination and chemical ordering, yet longer-range order is nonexistent. Defects, such as missing or added bonds, or chemical mismatches, however, are not accounted for. In this paper we explore under which conditions the idealized CRN model without defects captures the properties of the material, and under which conditions defects are an inherent part of the idealized model. We find that the density of defects in tetrahedral networks does not vary smoothly with variations in the interaction strengths, but jumps from close-to-zero to a finite density. Consequently, in certain materials, defects do not play a role except for being thermodynamical excitations, whereas in others they are a fundamental ingredient of the ideal structure.Comment: Article in honor of Mike Thorpe's 60th birthday (to appear in J. Phys: Cond Matt.

    Constant effective mass across the phase diagram of high-Tc_{c} cuprates

    Full text link
    We investigate the hole dynamics in two prototypical high temperature superconducting systems: La2x_{2-x}Srx_{x}CuO4_{4} and YBa2_{2}Cu3_{3}% Oy_{y} using a combination of DC transport and infrared spectroscopy. By exploring the effective spectral weight obtained with optics in conjunction with DC Hall results we find that the transition to the Mott insulating state in these systems is of the "vanishing carrier number" type since we observe no substantial enhancement of the mass as one proceeds to undoped phases. Further, the effective mass remains constant across the entire underdoped regime of the phase diagram. We discuss the implications of these results for the understanding of both transport phenomena and pairing mechanism in high-Tc_{c} systems.Comment: 5 pages, 2 figure

    Electrodynamics of superconducting pnictide superlattices

    Full text link
    It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure

    Optical Study of LaO_0.9F_0.1FeAs: Evidence for a Weakly Coupled Superconducting State

    Full text link
    We have studied the reflectance of the recently discovered superconductor LaO_0.9F0.FeAs in a wide energy range from the far infrared to the visible regime. We report on the observation of infrared active phonons, the plasma edge (PE) and possible interband transitions. On the basis of this data and the reported in-plane penetration depth lambda_L(0) about 254 nm [H. Luetkens et al., Phys. Rev. Lett. v. 101, 0970009 (2008)] a disorder sensitive relatively small value of the total electron electron-boson coupling constant lambda_tot=lambda_e-ph+lambda_e-sp ~ 0.6 +- 0.35 can be estimated adopting an effective single-band picture.Comment: Changed title, updated references, final published versio

    Model-Independent Sum Rule Analysis Based on Limited-Range Spectral Data

    Full text link
    Partial sum rules are widely used in physics to separate low- and high-energy degrees of freedom of complex dynamical systems. Their application, though, is challenged in practice by the always finite spectrometer bandwidth and is often performed using risky model-dependent extrapolations. We show that, given spectra of the real and imaginary parts of any causal frequency-dependent response function (for example, optical conductivity, magnetic susceptibility, acoustical impedance etc.) in a limited range, the sum-rule integral from zero to a certain cutoff frequency inside this range can be safely derived using only the Kramers-Kronig dispersion relations without any extra model assumptions. This implies that experimental techniques providing both active and reactive response components independently, such as spectroscopic ellipsometry in optics, allow an extrapolation-independent determination of spectral weight 'hidden' below the lowest accessible frequency.Comment: 5 pages, 3 figure

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp
    corecore