1,460 research outputs found
AGRICULTURAL PROGRAMS FOR HIGH-RISK AREAS OF THE SOUTHERN GREAT PLAINS
Agricultural and Food Policy,
Supermetallic conductivity in bromine-intercalated graphite
Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to
in-plane charge conductivities which increase monotonically with intercalation
time toward values (for ~6 at% Br) that are significantly higher than Cu at
temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic
susceptibility measurements confirm that the Br dopes the graphene sheets with
holes while simultaneously increasing the interplanar separation. The increase
of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with
the reduced diamagnetic susceptibility of the intercalated samples suggests
that the observed supermetallic conductivity derives from a parallel
combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure
Binary continuous random networks
Many properties of disordered materials can be understood by looking at
idealized structural models, in which the strain is as small as is possible in
the absence of long-range order. For covalent amorphous semiconductors and
glasses, such an idealized structural model, the continuous-random network, was
introduced 70 years ago by Zachariasen. In this model, each atom is placed in a
crystal-like local environment, with perfect coordination and chemical
ordering, yet longer-range order is nonexistent. Defects, such as missing or
added bonds, or chemical mismatches, however, are not accounted for. In this
paper we explore under which conditions the idealized CRN model without defects
captures the properties of the material, and under which conditions defects are
an inherent part of the idealized model. We find that the density of defects in
tetrahedral networks does not vary smoothly with variations in the interaction
strengths, but jumps from close-to-zero to a finite density. Consequently, in
certain materials, defects do not play a role except for being thermodynamical
excitations, whereas in others they are a fundamental ingredient of the ideal
structure.Comment: Article in honor of Mike Thorpe's 60th birthday (to appear in J.
Phys: Cond Matt.
Constant effective mass across the phase diagram of high-T cuprates
We investigate the hole dynamics in two prototypical high temperature
superconducting systems: LaSrCuO and YBaCuO using a combination of DC transport and infrared spectroscopy. By
exploring the effective spectral weight obtained with optics in conjunction
with DC Hall results we find that the transition to the Mott insulating state
in these systems is of the "vanishing carrier number" type since we observe no
substantial enhancement of the mass as one proceeds to undoped phases. Further,
the effective mass remains constant across the entire underdoped regime of the
phase diagram. We discuss the implications of these results for the
understanding of both transport phenomena and pairing mechanism in high-T
systems.Comment: 5 pages, 2 figure
Electrodynamics of superconducting pnictide superlattices
It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013)
that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting
pnictide are intercalated with non superconducting ultrathin layers of either
SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby
increasing critical fields and currents, without significantly affecting the
critical temperature of the pristine superconducting material. However, little
is known about the electron properties of these systems. Here we investigate
the electrodynamics of these superconducting pnictide superlattices in the
normal and superconducting state by using infrared reflectivity, from THz to
visible range. We find that multi-gap structure of these superlattices is
preserved, whereas some significant changes are observed in their electronic
structure with respect to those of the original pnictide. Our results suggest
that possible attempts to further increase the flux pinning may lead to a
breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure
Independent and Combined Effects of Menhaden Oil and High Fructose on Hepatic Lipid Metabolism
Download PD
Optical Study of LaO_0.9F_0.1FeAs: Evidence for a Weakly Coupled Superconducting State
We have studied the reflectance of the recently discovered superconductor
LaO_0.9F0.FeAs in a wide energy range from the far infrared to the visible
regime. We report on the observation of infrared active phonons, the plasma
edge (PE) and possible interband transitions. On the basis of this data and the
reported in-plane penetration depth lambda_L(0) about 254 nm [H. Luetkens et
al., Phys. Rev. Lett. v. 101, 0970009 (2008)] a disorder sensitive relatively
small value of the total electron electron-boson coupling constant
lambda_tot=lambda_e-ph+lambda_e-sp ~ 0.6 +- 0.35 can be estimated adopting an
effective single-band picture.Comment: Changed title, updated references, final published versio
Model-Independent Sum Rule Analysis Based on Limited-Range Spectral Data
Partial sum rules are widely used in physics to separate low- and high-energy
degrees of freedom of complex dynamical systems. Their application, though, is
challenged in practice by the always finite spectrometer bandwidth and is often
performed using risky model-dependent extrapolations. We show that, given
spectra of the real and imaginary parts of any causal frequency-dependent
response function (for example, optical conductivity, magnetic susceptibility,
acoustical impedance etc.) in a limited range, the sum-rule integral from zero
to a certain cutoff frequency inside this range can be safely derived using
only the Kramers-Kronig dispersion relations without any extra model
assumptions. This implies that experimental techniques providing both active
and reactive response components independently, such as spectroscopic
ellipsometry in optics, allow an extrapolation-independent determination of
spectral weight 'hidden' below the lowest accessible frequency.Comment: 5 pages, 3 figure
Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa
It has been known that the elemental Yb, a divalent metal at mbient pressure,
becomes a mixed-valent metal under external pressure, with its valence reaching
~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the
evolution of microscopic electronic states associated with the valence
crossover in Yb at external pressures up to 18 GPa. The measured infrared
reflectivity spectrum R(w) of Yb has shown large variations with pressure. In
particular, R(w) develops a deep minimum in the mid-infrared, which shifts to
lower energy with increasing pressure. The dip is attributed to optical
absorption due to a conduction c-f electron hybridization state, similarly to
those previously observed for heavy fermion compounds. The red shift of the dip
indicates that the - hybridization decreases with pressure, which is
consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp
- …
