69 research outputs found

    Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

    Get PDF
    Background: Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results: In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions: The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB

    Haemophilus influenzae outer membrane vesicle-induced blood-brain barrier permeability during experimental meningitis

    Full text link
    Haemophilus influenzae type b (Hib) lipopolysaccharide (LPS) may be present in the cerebrospinal fluid largely as part of outer membrane vesicles (OMV), which could possibly alter its activity. Similar to inoculation of purified Hib LPS, intracisternal inoculation of Hib OMV into adult rats resulted in dose- and time-dependent increases in blood-brain barrier permeability. Polymyxin B, but not an oligosaccharide-specific monoclonal antibody, significantly inhibited the activity of Hib OMV. No change in blood-brain barrier permeability occurred in leukopenic rats inoculated with Hib OMV. Hib OMV was as active as purified Hib LPS on a weight basis and therefore appears to be a relevant vehicle for the delivery of LPS during meningitis.</jats:p

    Adolescent Sinusitis and Convulsion

    No full text

    Recombinant human interleukin-1 induces meningitis and blood-brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor.

    No full text
    The diversity of infectious agents capable of inducing meningitis and blood-brain barrier (BBB) injury suggests the potential for a common host mediator. The inflammatory polypeptides, IL-1 and TNF, were tested in an experimental rat model as candidate mediators for induction of meningitis and BBB injury. Intracisternal challenge of rIL-1 beta into rats induced neutrophil emigration into cerebrospinal fluid (CSF) and significantly increased BBB permeability to systemically administered 125I-BSA as early as 3 h later (P less than 0.05). This injury was reversible, dose dependent and significantly inhibited by prior induction of systemic neutropenia (via intraperitoneal cyclophosphamide) or preincubation of the rIL-1 beta inoculum (50 U) with an IgG monoclonal antibody to rIL-1 beta. Similar kinetics and reversibility of CSF inflammation and BSA permeability were observed using equivalent dose inocula of rIL-1 alpha. rTNF-alpha was less effective as an independent inducer of meningitis or BBB injury over an inoculum range of 10(1) U (0.0016 micrograms/kg)-10(6) U (160 micrograms/kg) when injected intracisternally, but inoculum combinations of low concentrations of rTNF alpha (10(3) U) and rIL-1 beta (0.0005-5.0 U) were synergistic in inducing both meningitis and BBB permeability to systemic 125I-BSA. These data suggest that in situ generation of interleukin-1 within CSF (with or without TNF) is capable of mediating both meningeal inflammation and BBB injury seen in various central nervous system infections
    corecore